

CMS: forward jet production and energy flow

Igor Katkov

On behalf of the CMS Collaboration

Results and prospects of forward physics at the LHC: Implications for the study of diffraction, cosmic ray interactions, and more 11-12 February 2013 CERN

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Cherenkov/quartz calorimetry in the <u>CMS forward region</u> (HF @ 11.2m / CASTOR @ 14.4m / ZDC @ 140m) ↔ space, magnetic field, radiation

Measurement of energy flow at large pseudorapidities in pp collisions at $\sqrt{s} = 0.9$ and 7 TeV

[J. High Energy Phys. 11 (2011) 148, Erratum-ibid. J. High Energy Phys. 02 (2012) 055]

http://cds.cern.ch/record/1386739

Forward energy flow

- Strong rise of energy flow with energy
- Energy flow enhnced for dijets
- Models fail w/o MPI

dE/dŋ (GeV) 500 100

150

100

50

1.2

0.8

MC/Data

.

3.5

CMS

Data

EPOS 1.99

OGS IFT I

OGSJET 01

Data best described by cosmic ray hadronic models

4/23 11-12 February 2013 ForwardPhysicsLHC = results and prospects of forward physics at the LHC: implications for diffraction, cosmic rays, and more

Forward Energy Flow, Central Charged-Particle Multiplicities, and Pseudorapidity Gaps in W and Z Boson Events from pp Collisions at 7 TeV

[Eur.Phys.J. C72 (2012) 1839]

http://cds.cern.ch/record/1386705

Forward energy flow with W/Z production

Explore underlying event / MPI / diffraction

Forward energy flow with W/Z production

Forward/backward strongly correlated; not well modeled

Study of the Underlying Event at Forward Rapidity in Proton-Proton Collisions at 0.9, 2.76 and 7 TeV

[CMS PAS FWD 11-003]

http://cdsweb.cern.ch/record/1434458

Energy flow \rightarrow hard-to-inclusive ratio

9/23 11-12 February 2013 ForwardPhysicsLHC = results and prospects of forward physics at the LHC: implications for diffraction, cosmic rays, and more

- Minimum bias / inclusive events selected suppressing diffraction
- Events with hard scale \rightarrow central leading charged jet with $p_{\tau} > 1$ GeV/c and $|\eta| < 2$
 - Ratio \rightarrow reduced systematics, dominated by simulation of CASTOR geometry
- Minimization of hadron level correction factors $\rightarrow \xi_{x}$, ξ_{y}

I. Katkov / Forward jets and energy flow

Hard-to-inclusive ratio vs p_{τ} and energy

- **a** $\sqrt{s} = 0.9 \text{ TeV} \rightarrow \text{jet} + \text{UE}$ activity = depletion of remnant seen in CASTOR
- $\sqrt{s} = 7 \text{ TeV} \rightarrow \text{fast increase of MPI activity at low } p_T$; saturation at high p_T
- Cosmic ray models \rightarrow no tuning; bracketing data; spread increases with energy

Normalized energy density (inclusive/hard scale) vs energy

Measurement of the pseudorapidity and centrality dependence of the very forward energy density in PbPb collisions at $\sqrt{s}=2.76$ ATeV

[CMS PAS HIN 12-006]

http://cds.cern.ch/record/1472732

Energy density dE/d η (η , N_{part}) = < E > / $\Delta \eta$

Data vs models: rapidity and centrality dependence at the same time
HYDJET: central rapidity; EPOS: central events; QGSJET: peripheral events

Centrality dependence flattens out when using more forward detectors; $\eta \rightarrow x$

Average energy-weighted (relative)

pseudorapidity
$$\langle \delta y \rangle_{\rm E} = \frac{2}{E_{\rm N}N_{\rm part}} \int_{\infty}^{-y_{\rm beam}} y' \frac{{\rm d}E}{{\rm d}y'} {\rm d}y', \ y' = |\eta| - y_{\rm beam}$$

CASTOR close to y_{beam} : beam fragmentation region

Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at $\sqrt{s} = 7$ TeV

[J. High Energy Phys. 06 (2012) 036]

http://cds.cern.ch/record/1421692

Inclusive forward jets

In reasonable agreement with predictions within large JES uncertainties

Forward-central jets

- Any effects beyond DGLAP?
- Wide spread in predictions

forward jet p_T (GeV/c)

Correlations pose a challenge for description

central jet p_T (GeV/c)

Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in proton-proton collisions at $\sqrt{s} = 7 \text{ TeV}$

[Eur. Phys. J. C 72 (2012) 2216]

http://cds.cern.ch/record/1437010

Inclusive to exclusive di-jet ratio

Large rapidity separation to probe effects beyond DGLAP
Rise of R = \sigma_{incl} / \sigma_{excl} with \Delta y as phase space for parton emission opens
In agreement with PYTHIA6 predictions within uncertainties

Measurement of the electroweak production cross section of the Z boson with two forwardbackward jets in pp collisions at 7 TeV

[CMS PAS FSQ 12-019]

http://cds.cern.ch/record/1493475

Vector-Boson-Fusion Z production (with forward jets)

EWK x-section extracted σ_{meas} = 154 ± 24 (stat) ± 46 (exp.syst) ± 27 (th.syst) ± 3 (lumi) fb [vs σ_{theory} = 166 fb (VBFNLO)]

Explored CMS capabilities for VBF Higgs production measurements

Summary and outlook

- First results employing full potential of CMS calorimetry coverage at highest collision energies
- Rich collection of results in pp (and PbPb) collisions, including evolution with energy
- Standard collider physics generators do a reasonable job for inclusive measurements; correlations in several cases pose a challenge.
- Cosmic ray hadronic models in many cases provide nice description (w/o tuning)
- Still waiting for a smoking gun / signs of the New
 - Azimuthal de-correlations in Mueller-Navelet di-jets, forwardcentral jet correlations, analyses of 8 TeV, pPb, CMS-TOTEM data...

BACKUP

25/23 11-12 February 2013

ForwardPhysicsLHC = results and prospects of forward physics at the LHC: implications for diffraction, cosmic rays, and more

CMS forward region

CASTOR Calorimeter design

 16 azimuthal sectors (semi-octants/towers) mechanically organised in two half calorimeters; EM part (2 modules) + HAD part (12 modules); EM = 0.7λ = 20X₀; HAD = 12 * 0.7 = 9.24λ; overall depth = 10λ

Low-x QCD

Understanding QCD at new energy frontier: jets, particle and energy flow in pp, PbPb at \sqrt{a} against MC models

www.hep.phy.cam.ac.uk/~wjs Nucl. Phys. A (2005) 447 David d'Enterria

28/23 11-12 February 2013 ForwardPhysicsLHC = results and prospects of forward physics at the LHC: implications for diffraction, cosmic rays, and more

I. Katkov / Forward jets and energy flow

Energy flow in PbPb collisions at 2.76 TeV

- Absolute energy measurement with CASTOR (region of beam fragmentation) → conservative estimate of uncertainty = 22% (cross-calibration procedure, simulation, geometry)
- Minimum bias events at nominal magnetic field
- Hadron level → all particles above lifetime threshold excluding muons / neutrinos
- Correction factors ~1.7: using only front calorimeter part (3.2 λ_i vs 10 λ_i)

Density of transverse energy, $E_{T}(\eta, N_{part}) = E / \cosh(\eta)$

CMS PRELIMINARY

CMS PRELIMINARY

Monte Carlo models / tunes

Partonic cross section regularised via cut-off

 $1/\hat{p}_T^4 \to 1/(\hat{p}_T^2 + \hat{p}_{T_0}^2)^2$, $\hat{p}_{T_0}(\sqrt{s}) = \hat{p}_{T_0}(\sqrt{s_0}) \cdot (\sqrt{s} / \sqrt{s_0})^{\epsilon}$

- More MPI activity is predicted for smaller values of pt0
- Considered mainly PYTHIA-6 tunes consistent with UE measurements by CDF which favour pt0 = 2.0 GeV for √s0 = 1.8 TeV
- Tunes DW, P0, Pro-Q20: ε = 0.25 in agreement with CDF data at √s = 630 GeV and 1.8 TeV (DW pt0 = 1.90 GeV)
- Tune D6T: ε = 0.16 motivated by the measurements of charged particle multiplicities by UA5 at SppS collider (pt0 = 1.84 GeV)
- Tunes P0, Pro-Q20 use LEP results to describe hadron fragmentation at high z
- Tune P0 and PYTHIA-8: new PYTHIA MPI model interleaved with parton showering
- > PYTHIA-6 includes only soft diffraction, while PYTHIA-8 includes simulation of hard diffraction
- > PHOJET: alternative event generator, differs in underlying dynamical model for particle production, based on the dual-parton model with multi-Pomeron exchanges

Monte Carlo models

CASCADE: CCFM evolution with off-shell matrix elements

- JIMMY generator for multiple interactions, close integration with HERWIG
- POWHEG: interface NLO calculations to shower Monte Carlo programs
- High Energy Jets (HEJ) generator for multi-jet processes with focus on (non-collinear) radiative corrections

Cosmic ray models:

Older models:

Glauber based, different mostly in remnants+diffraction, for example: QGSJet01 (Kalmykov, Ostapchenko) SIBYLL (Engel, Gaisser, Lipari, Stanev)

Recent models:

QGSJetII (Ostapchenko) Theory++, Optimized for cosmic rays

EPOS (Werner, Pierog) Phenomenology++ Optimized for LHC, RHIC (and cosmic rays)

W/Z events w/o rapidity gap

33/23 11-12 February 2013

ForwardPhysicsLHC = results and prospects of forward physics at the LHC: implications for diffraction, cosmic rays, and more