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Constraints from pQCD & problems

pQCD: collinear factorization applies for inclusive spectra
d3σpp→h

dp3 = ∑i,j,k fi/p ⊗σij→k ⊗ fj/p ⊗Dh/k

separates short- &
long-distance dynamics

pQCD predicts evolution of
PDFs (fi/p) & FFs (Dh/k)

⇒ allows to simulate
perturbative (high pt) part
of parton cascades (initial
& final state emission)
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’Marry’ slow energy rise of σtot
pp and the steep increase of F2?

next to impossible in the eikonal picture
(independent parton cascades)

⇒ nonlinear parton dynamics – crucial

generally believed: cured by parton saturation effects
(for small Q2, xG(x,Q2)→ constas x → 0)

mimicked in models by energy-dependent cutoff: Q0 = Q0(s)

however strong saturation not seen at HERA?

what is different in pp compared to DIS?

in DIS: rescattering of
intermediate partons off
the parent hadron

in pp: rescattering off the
target hadron in addition

p p

p
...

(x, Q  )2 (x, Q  )2
non-inclusive observables can’t be described with universal PDFs
(additional screening corrections are process-dependent)
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From SFs to σtot
pp: saturation or parton correlations?

now hard screening
(hard elastic rescattering)

and double hard scattering
(production of 2 jet pairs)

no effect for inclusive jet spectra
[(−2)×1+(+1)×2= 0]

but: screening correction for σtot
pp

[(−2)+ (+1) =−1]

⇒ multi-parton interactions provide a key to understand σtot
pp

(and vice versa)
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ξ = M2
X/s distribution in

SIBYLL 2.1 &
QGSJET-II-04 [SO,
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has important impact on hadronic cross sections, multiparton
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