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From SFs to th saturation or parton correlations?

® 'Marry’ slow energy rise of o) and the steep increase of Fy?

& next to impossible in the eikonal picture
(independent parton cascades)

@ = nonlinear parton dynamics — crucial

<

generally believed: cured by parton saturation effects
(for small Q?, xG(x,Q?) — constas x — 0)

o mimicked in models by energy-dependent cutoff: Qo = Qo(S)

@ however strong saturation not seen at HERA?

o what is different in pp compared to DIS?

@ in DIS: rescattering of P
intermediate partons off
the parent hadron

non-inclusive observables can't be descrlbed with unlversal PDFs
(additional screening corrections are process-dependent)
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From SFs to ogl’ot: saturation or parton correlations?

@ now hard screening
(hard elastic rescattering)

@ and double hard scattering
(production of 2 jet pairs)

@ no effect for inclusive jet spectra
[(—2) x 1+ (+1) x2=0]

@ but: screening correction for oy

-2+ (+) =1 |

weight: -2 weight: +1

additional screening caused by multi-parton correlations
@ two hard parton cascades originate from the same soft parent
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From SFs to og’t: saturation or parton correlations?

@ now hard screening
(hard elastic rescattering)

@ and double hard scattering
(production of 2 jet pairs)

@ no effect for inclusive jet spectra
[(=2) x 1+ (+1) x2=0(]

tot

@ but: screening correction for oy,

[(=2)+(+1) = -1]

' weight: -2 weight: +1

= multi-parton interactions provide a key to understand Ggopt
(and vice versa)
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High mass diffraction dissociation
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© Models of hadronic interactions — important ingredient for CR
studies

© Important constraints from pQCD for inclusive observables:
o collinear factorization
@ DGLAP evolution for PDFs

© However: crucial issues treated phenomenologically

@ Most challenging problem: treatment of nonlinear effects

e has important impact on hadronic cross sections, multiparton
interactions & structure of diffractive final states
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