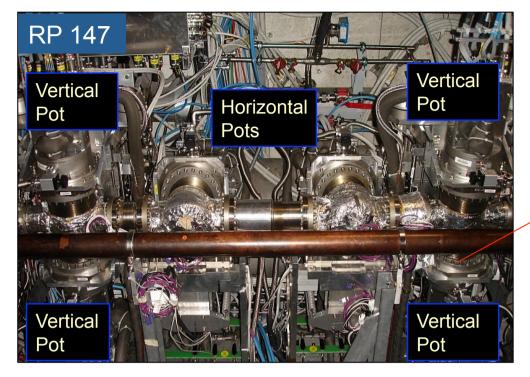
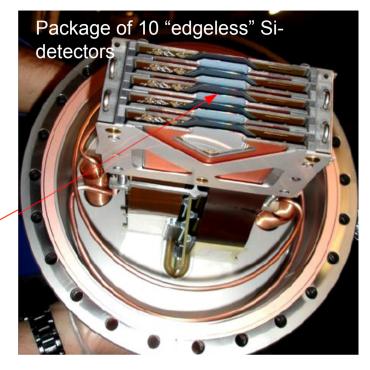
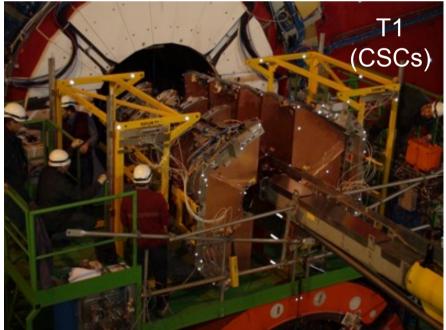

TOTEM Cross-Sections and Forward Multiplicities


Totem experimental setup





Totem publications

2011 publications

- Proton-proton elastic scattering at the LHC energy of $\sqrt{s} = 7$ TeV. 2011 FPL 95 41001
- First measurement of the total proton-proton cross-section at the LHC energy of $\sqrt{s} = 7$ TeV. 2011 EPL 96 21002

2012 publications

• Measurement of the forward charged particle pseudorapidity density in pp collisions at $\sqrt{s} = 7$ TeV with the TOTEM experiment.

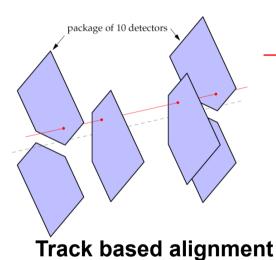
2012 EPL 98 31002

- Measurement of proton-proton elastic scattering and total cross-section at \sqrt{s} = 7 TeV 2013 EPL 101 21002
- Measurement of proton-proton inelastic scattering cross-section at \sqrt{s} = 7 TeV 2013 EPL 101 21003
- Luminosity-independent measurements of total, elastic and inelastic cross-sections at $\sqrt{s} = 7$ TeV

2013 FPL 101 21004

• A luminosity-independent measurement of the proton-proton total cross-section at \sqrt{s} = 8TeV CERN-PH-EP-2012-354

7TeV low β*=3m elastic scattering measurements (2010 data)



Proton reconstruction

Both angle projections reconstructed: Θ_{x}^{*} and Θ_{v}^{*}

- Θ_x^* from Θ_x @ RP220 (through dL_x/ds) $\Theta_{x,RP}$ ≈ dL_x/ds Θ_x^*
- Θ_v^* from y @ RP220 (through L_v) $y_{RP} \approx L_v^* \Theta_v^*$

$$y_{,RP} \approx L_y \Theta_y^*$$

→ Alignment

- Alignment between pots with overlapping tracks (~1µm)
- Alignment with respect to the beam collimator like scraping exercise (~20µm)
- Mechanical constraints between top and bottom pots $(~10\mu m)$

→ Optics errors

- Depend on LHC imperfections and LHC configuration
- Optics estimation with elastic scattering
 - $\Theta_{\text{left}}^* = \Theta_{\text{right}}^*$ (proton pair collinearity)
 - Proton position ↔ angle correlations (+Liouville's theorem)
 - L_x=0 determination, coupling estimation

Elastic scattering: difficult precise measurement

1. Kinematics reconstruction

proton tracks in RPs → proton kinematics at IP

2. Elastic tagging

- Topology : diagonals
- Proton co-linearity : compare left and right reconstructed angles
- No forward momentum loss: remove protons shifted due to dispersion

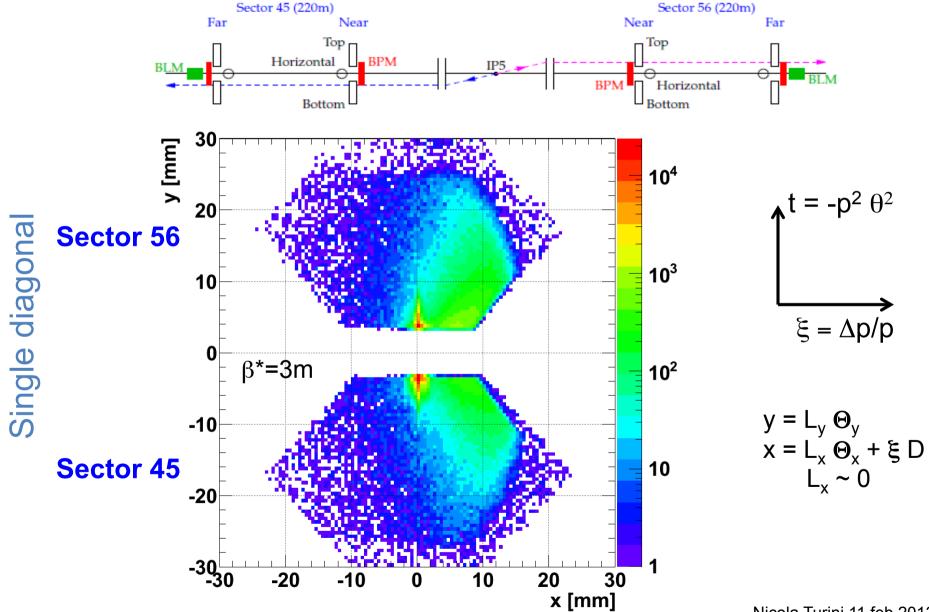
3. Acceptance corrections

- Finite size of RP sensors, LHC apertures
- Azimuthal symmetry of el. scattering → geometrical corrections
- Beam divergence → correction for missing protons at RP edges

4. Unfolding of resolution effects

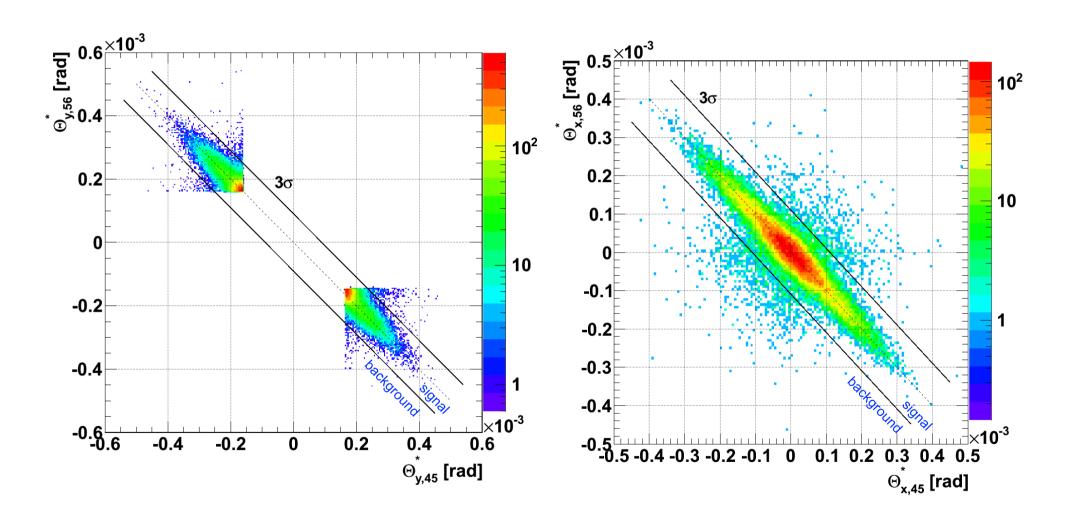
Numerical, kernel function based and completely analytical unfolding

5. Inefficiency corrections

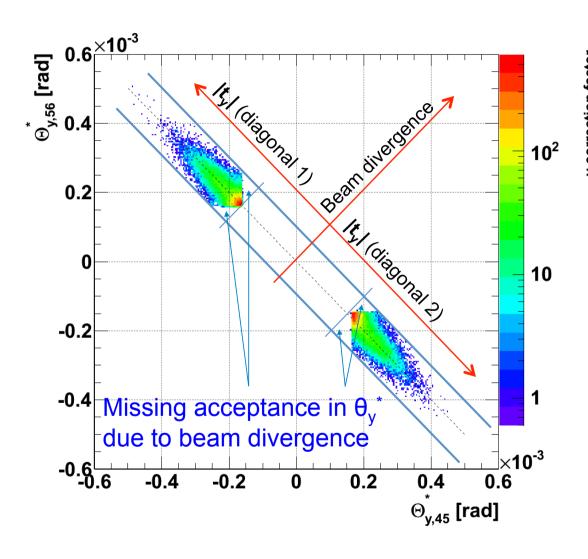

- RP inefficiencies
- pile-up related inefficiencies : elastic event + another track in a RP

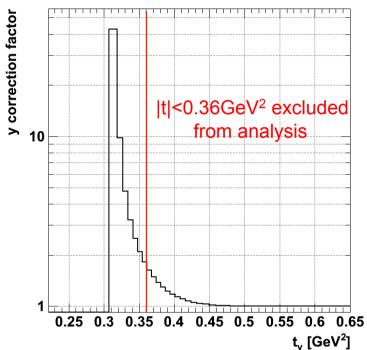
6. Luminosity

- from CMS (if available, uncertainty 4%)
- TOTEM luminosity measurement


Elastic tagging: topology

Nicola Turini 11 feb 2013


Elastic tagging: collinearity cuts



Data outside the 3 σ cuts used for background estimation

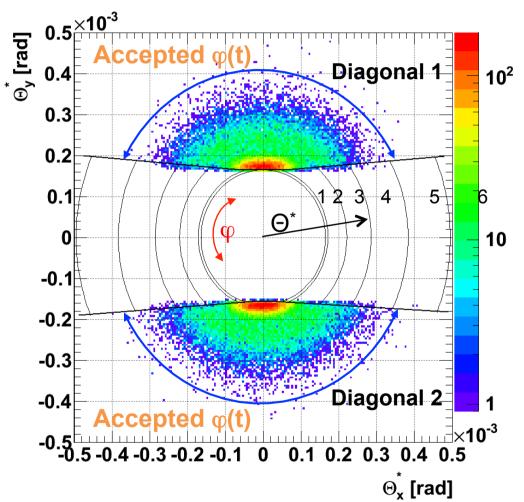
t_v-acceptance corrections

Correction error (t_v) :

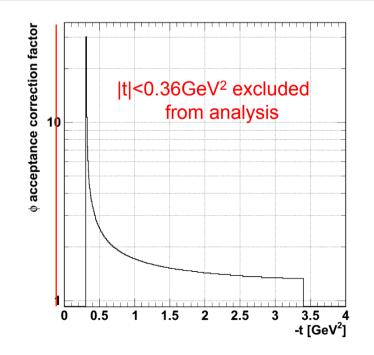
0.31 GeV²: 30%

0.33 GeV²: 11%

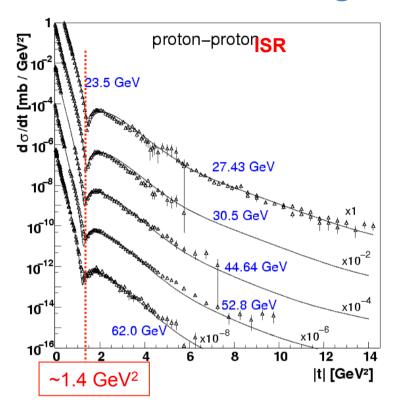
0.35 GeV²: 2%

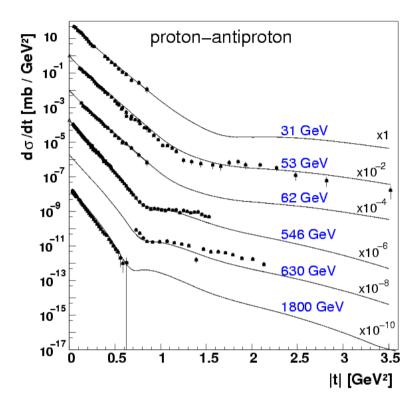

0.4 GeV²: 0.8%

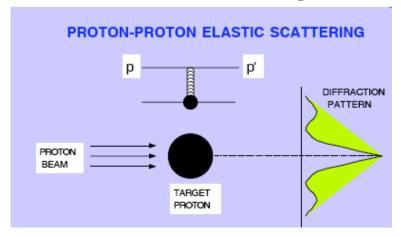
0.5 GeV²: 0.1%


φ-acceptance correction

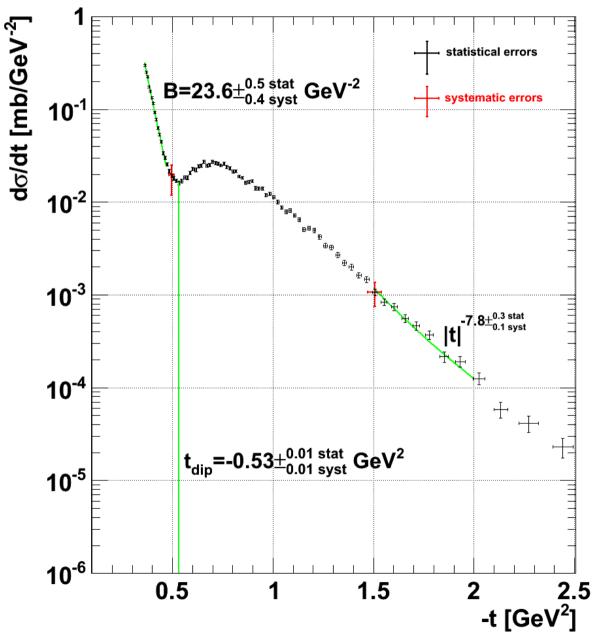
Total ϕ -acceptance correction


Critical at low t-acceptant


No.	t [GeV ²]	O* [rad]	Accepted φ (2 diag.) [°]	φ accept. correct. factor
1	0.33	1.65E-04	38.6	9.3±4.7%
2	0.36	1.71E-04	76.4	4.7±1.8%
3	0.60	2.21E-04	162.5	2.2±0.3%
4	1.00	2.86E-04	209.8	1.7±0.1%
5	1.80	3.83E-04	246.3	1.5
6	3.00	4.95E-04	269.0	1.3



Elastic scattering – from ISR to Tevatron


Diffractive minimum: analogous to Fraunhofer diffraction:

- minimum moves to lower |t| with increasing s
 - \rightarrow interaction region grows (as also seen from σ_{tot})
- depth of minimum changes
 - → shape of proton profile changes
- depth of minimum differs between pp, p⁻p
 - → different mix of processes

TOTEM first do/dt result

Proton-proton elastic scattering at the LHC energy of $\sqrt{s}=7\,\text{TeV}$

[EPL 95 (2011) 41001]

Nicola Turini 11 feb₁2013

7TeV Cross Section Measurements

7 TeV Cross Section measurement

elastic observables only:

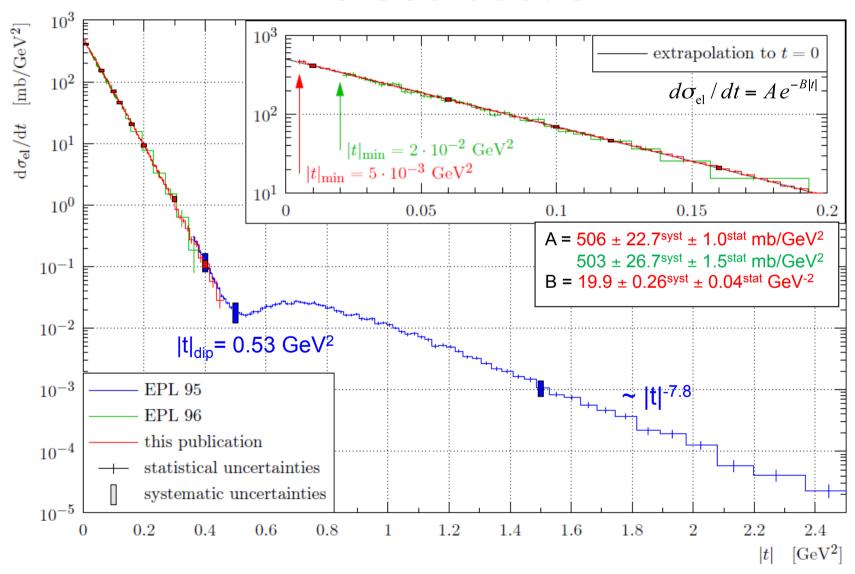
 σ_{tot}

$$\sigma_{\text{tot}}^2 = \frac{16\pi}{1 + \varrho^2} \frac{1}{\mathcal{L}} \left. \frac{\text{d}N_{\text{el}}}{\text{d}t} \right|_0 \qquad (\rho = 0.14 \text{ [COMPETE]})$$

June 2011 (EPL96): σ_{tot} = (98.3 ±2.8) mb Oct. 2011 (EPL101): σ_{tot} = (98.6 ±2.2) mb

$$\sigma_{\text{tot}} = \frac{1}{\mathcal{L}} \left(N_{\text{el}} + N_{\text{inel}} \right)$$

$$\sigma_{\text{tot}} = (99.1 \pm 4.3) \text{ mb}$$


luminosity independent:

$$\sigma_{\text{tot}} = \frac{16\pi}{1 + \varrho^2} \frac{dN_{\text{el}}/dt|_0}{N_{\text{el}} + N_{\text{inel}}}$$

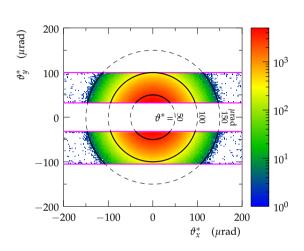
$$\sigma_{\text{tot}} = (98.0 \pm 2.5) \text{ mb}$$

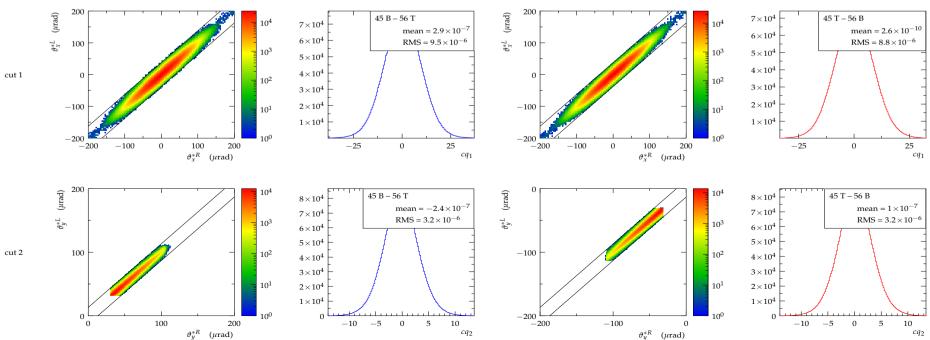
7 TeV elastic differential cross section

8TeV Total, Elastic and Inelastic cross section

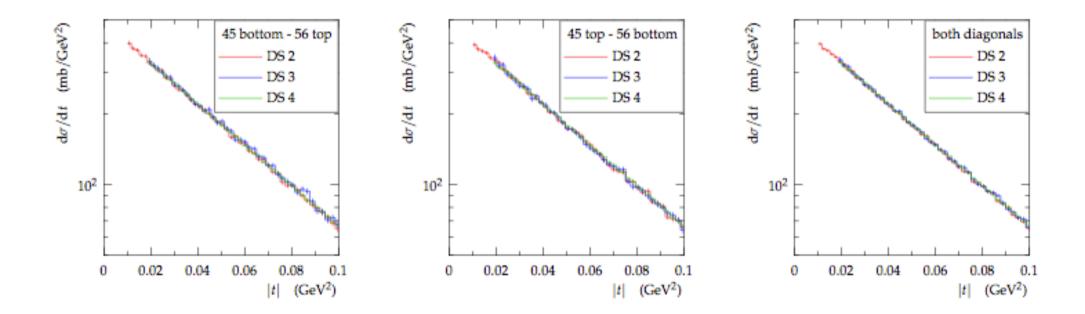
July 2012: runs at β* = 90 m

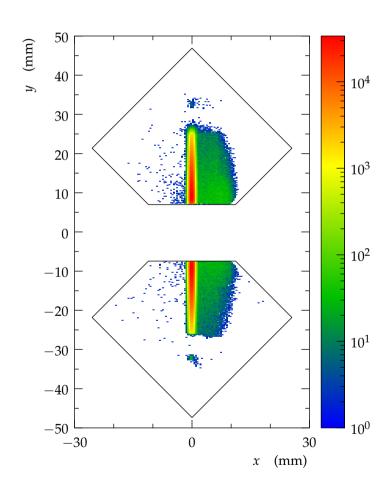
dataset	date	bunches	RPs	$ t _{\min}$ (GeV ²)	\mathcal{L} (mb ⁻¹)	
1	7 July, 1st fill	1	3σ	$4 \cdot 10^{-3}$	_	
2	7 July, 2nd fill	1	6σ	$7 \cdot 10^{-3}$	≈ 40	Ds2
3 <i>a</i>	12-13 July	1	9.5σ	$15 \cdot 10^{-3}$	≈ 30	Ds3
3 <i>b</i>	12–13 July	2 or 3	9.5σ	$15 \cdot 10^{-3}$	≈ 820	Ds4

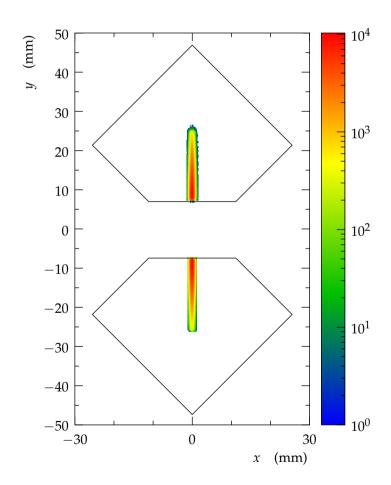

The analysis has been performed on two datasets Ds2 and Ds3


	Dataset	RP position	t min [GeV ²]	elastic events	inelastic events
Ds2	1	$6.0\sigma_{beam}$	0.01	416k	2.30M
Ds3	2	$9.5\sigma_{beam}$	0.02	238k	1.72M

Elastic scattering analysis


Source	Effect on	$ t = 0.01 \text{GeV}^2$	$0.1 \mathrm{GeV^2}$	$0.2 \mathrm{GeV^2}$	
Alignment	t	±0.21%	±0.3%	±0.57%	
Kinematics Reconstruction: Optics, Beam Energy	t	±1.09%	$\pm 0.72\%$	$\pm 4.3\%$	
Selection	norm.		$\pm 0.5\%$		
Acceptance (corr. factor)	dN/dt	3.3 ± 0.024	1.2 ± 0.002	1.8 ± 0.004	
Resolution Unfolding	t	$(0.5\pm0.1)\%$	(-0.2 ± 0.003) %	(-2.6 ± 0.1) %	
		Uncorrelated ineff: (10±0.6)%			
Efficiency	norm.	Correlated ineff. : $(3 \pm 1)\%$			
•		Pile-up: (4.7±0.4) %			
Extrapolation/Fit		$dN_{el}/dt _{t=0}$ ±2.5%		5%	
		B $(19.9 \pm 0.3) \text{GeV}^{-2}$			


Differential elastic cross section


Comparison between the 3 different datasets, at different distance from the beam, and the two diagonals.

β *= 90m hit distribution

Raw hit distribution

Elastic protons hit distribution

Inelastic rate

- The trigger required at least one track in T2.
- Non colliding bunches used to estimate the beam-gas event rate.
- No-bias trigger subsample used to estimate the trigger efficiency and central diffraction events getting in T1 and not in T2.
- Central diffraction rate outside Totem inelastic detectors acceptance estimated via MonteCarlo.

Source	Correction	Uncertainty	Effect on
Beam gas	0.45%	0.45%	all rates
Trigger Efficiency	1.2%	0.6%	all rates
Pile up	2.8%	0.6%	all rates
TO monotonion	0.35%	0.2%	$N_{\rm T2vis}$
T2 reconstruction	0.8%	0.4%	$N_{\text{inel}}, N_{ \eta < 6.5}$
"T1 only"	1.2%	0.4%	$N_{\text{inel}}, N_{ \eta < 6.5}$
Internal Gap covering T2	0.4%	0.2%	N_{inel} , $N_{ \eta <6.5}$
Central diffraction	-	0.35%	$N_{\text{inel}}, N_{ \eta < 6.5}$
Low mass diffraction (seen)	0.4%	0.2%	$N_{ \eta < 6.5}$
Low mass diffraction	4.8%	2.4%	$N_{\rm inel}$

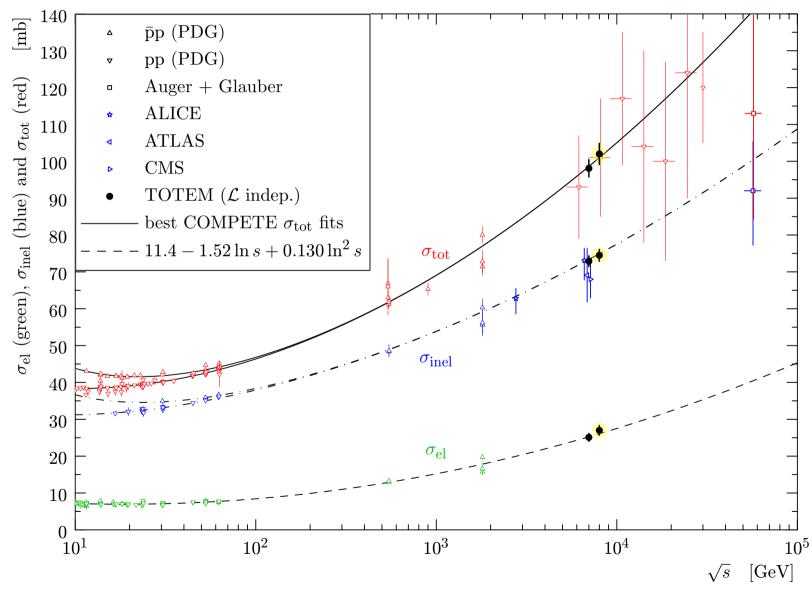
The T2 acceptance edge at $|\eta|$ = 6.5 corresponds approximately to diffractive masses of 3.6GeV (at 50% efficiency). The contribution of events with all final state particles at $|\eta|$ > 6.5 is estimated with QGSJET-II-03 after tuning the MonteCarlo prediction with the observed fraction of "1h" events.

8TeV cross sections

$$\sigma_{tot} = \frac{16\pi}{1 + \rho^2} \frac{dN_{el}/dt|_0}{N_{el} + N_{inel}}$$

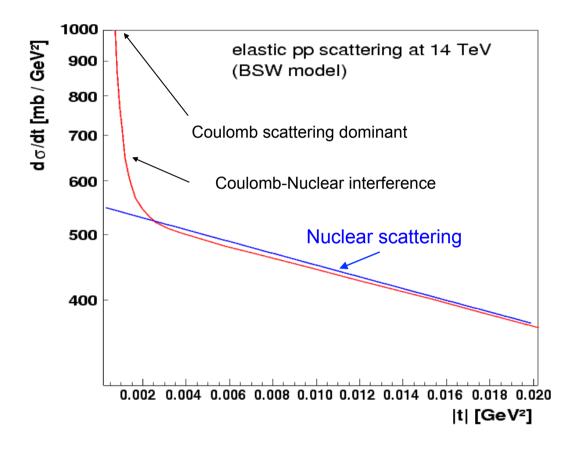
$$\downarrow$$

$$\sigma_{tot} = (101.7 \pm 2.9)mb$$


$$\frac{\sigma_{el}}{\sigma_{inel}} = 0.362 \pm 0.011$$

$$\sigma_{inel} = (74.7 \pm 1.7) mb$$

$$\sigma_{el} = (27.1 \pm 1.4) mb$$

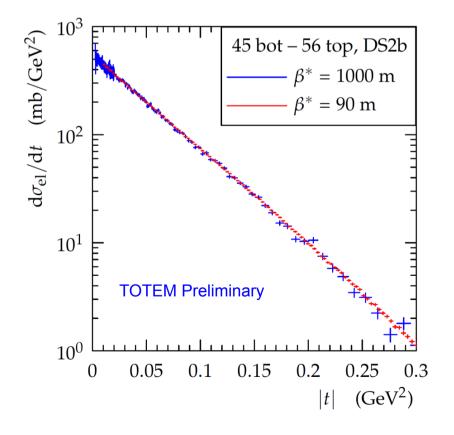


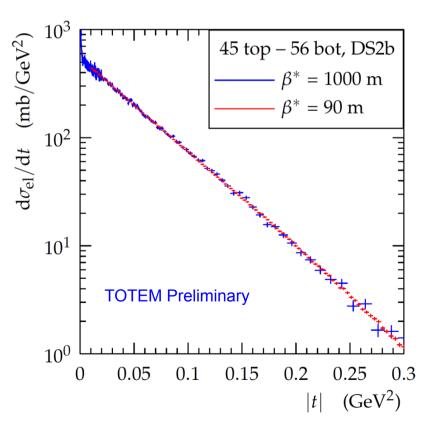
8TeV cross sections

ρ measurement: elastic scattering at low |t|

Measurement of ρ by studying the Coulomb – Nuclear interference region down to $|\mathbf{t}| \sim 6 \times 10^{-4} \, \text{GeV}^2$

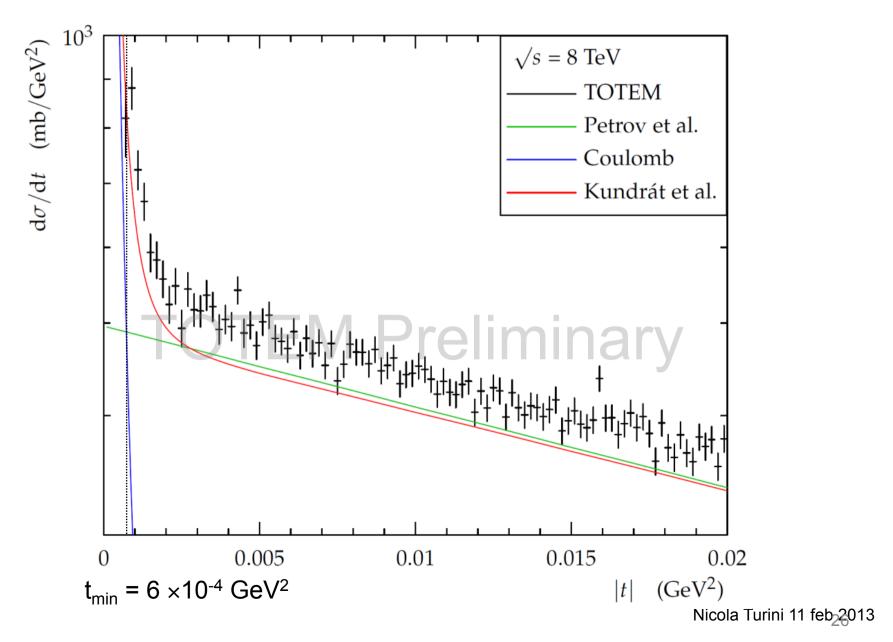
Reachable with $\beta^* \sim 1000 \text{ m}!$

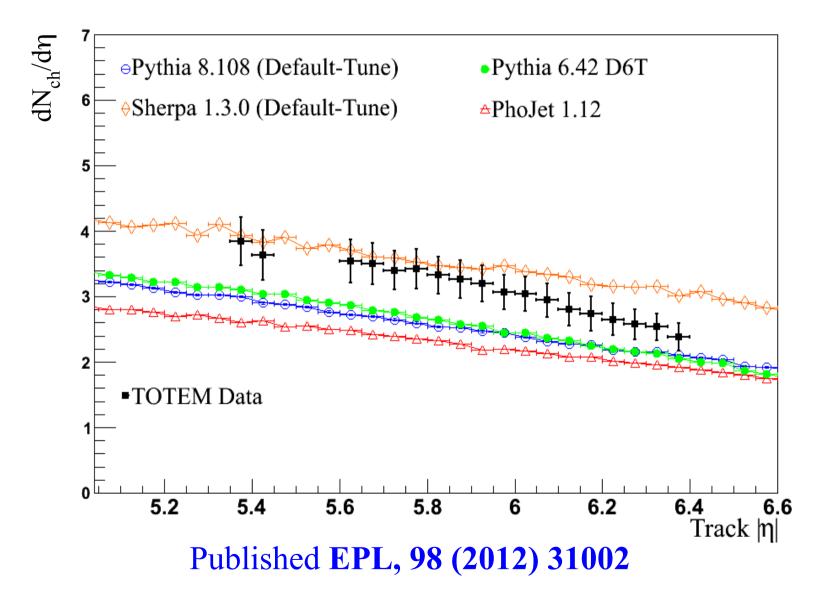

First Coulomb interference region measurement sqrt s = 8 TeV, β^* = 1000m


Luminosity calibration with luminosity independent total cross-section @ β *=90m,

integration region: $0.01 \text{ GeV}^2 < |t| < 0.3 \text{ GeV}^2$

$$L_{int} = 5.73 + 14.45 \ \mu b^{-1} = 20.18 \ \mu b^{-1}$$


$$t_{min} = 6 \times 10^{-4} \text{ GeV}^2$$

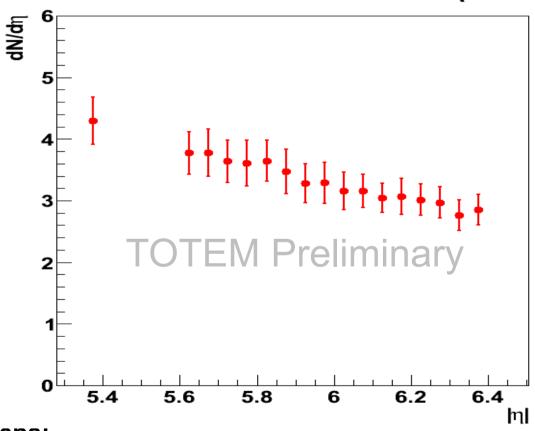


First Coulomb interference region measurement sqrt s = 8 TeV, β^* = 1000m



$dN_{ch}/d\eta$ measured in T2, sqrt s = 7 TeV

$dN_{ch}/d\eta$ combined with other LHC exp.



Ongoing activities within *LPCC* framework

First common CMS-TOTEM analysis dN_{ch}/dη @ 8 TeV

8 TeV Plus Near dN/dη

Further steps:

Error estimation not complete.

Correction factors: high multiplicity events, trigger, pileup. Include the other quarters

Conclusions

- Totem has measured the elastic, inelastic and total pp cross sections at \sqrt{s} =7 and 8 TeV.
- The Fraunhofer peak has been detected and precisely measured at \sqrt{s} =7.
- A forward charged tracks multiplicity has been measured in the T2 region at $\sqrt{s} = 7$ TeV, while at 8 TeV the analysis is quite advanced (data in common with CMS).
- We are attempting to repeat the measurement at $\sqrt{s} = 2.7$ TeV with the current data tacking although the optics is not optimal (β *=11m)

Backup

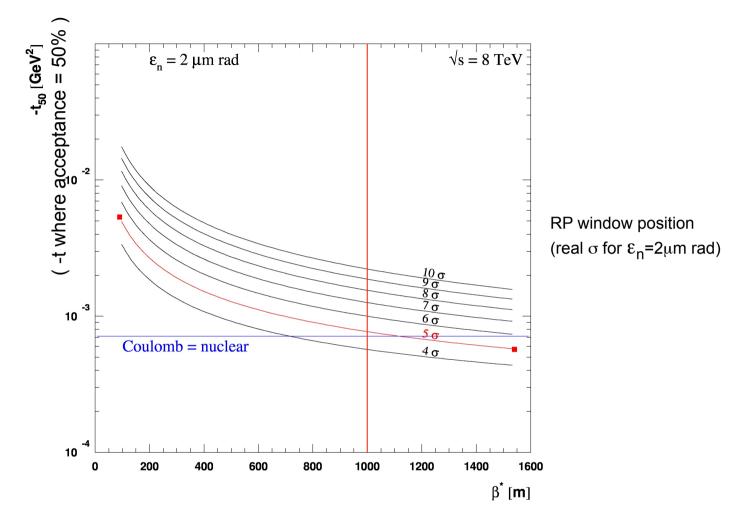
Joint Data Taking with CMS

May 2012: low pileup run: $\beta^* = 0.6$ m, $\sqrt{s} = 8$ TeV, T1 & T2 & CMS read out

Date	Trigger	Inelastic events	
May 1	T2 BX	~5 M	no RP

dN/dη, correlations, underlying even

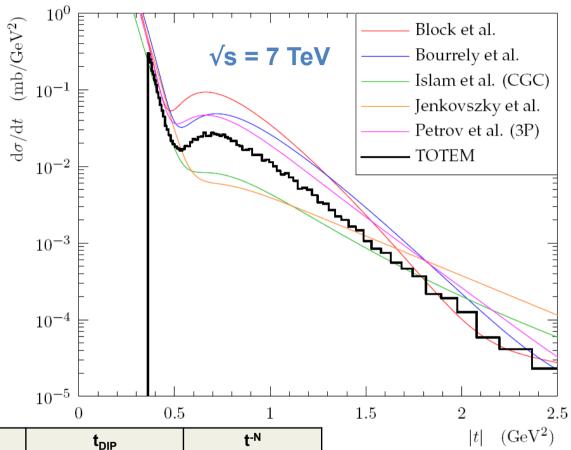
July 2012: $\beta^* = 90 \text{ m}$, $\sqrt{s} = 8 \text{ TeV}$, RP & T1 & T2 & CMS read out


Date, Set	Trigger	Inelastic events	RP position
July 7, DS 2	$T2 \parallel RP_{2arms} \parallel BX$	~2 M	6 σ
July 12-13, DS 3a	$T2 \parallel RP_{2arms} \parallel BX$	~10 M	9.5 σ V, 11σ H
July 12-13, DS 3b	T2 RP _{2arms} CMS (CMS = 2 jets @ $p^T > 20$ GeV, 2 μ , 2 central e/ γ)	~3.5 M	9.5 σ V, 11σ H

 σ_{tot} , σ_{inel} with CMS, soft & semi-hard diffraction, correlations

- Combined dN_{ch} / dη and multiplicity correlations
- Soft and hard diffraction: p + dijets (90m runs)
- $M_{ii}/M_{\xi\xi}$ correlation and search for exclusive dijet production (90m runs)

Reaching the Coulomb-Nuclear Interference Region



In October the beam was unsqueezed to reach the β^* = 1Km Totem could approach one vertical diagonal (Top – Bottom) up to 3σ from the beam axis. The other diagonal had to be put to 10σ due to safety (anti-collision) switches blocking the contemporary approach of top-bottom telescopes.

Nicola Turini 11 feb 2013

TOTEM Result + some models

	B (t=-0.4 GeV ²)	t _{DIP}	t ^{-N} [1.5–2.0 GeV ²]
	[GeV ⁻²]	[GeV ²]	[N]
Islam	19.9	0.65	5.0
Jenkovsky	20.1	0.72	4.2
Petrov	22.7	0.52	7.0
Bourrely	21.7	0.54	8.4
Block	24.4	0.48	10.4
TOTEM	23.6 ± 0.5 ± 0.4	0.53 ± 0.01 ± 0.01	7.8 ± 0.3 ± 0.1