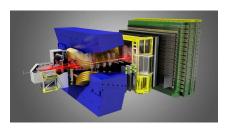
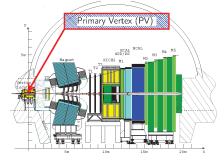
Florin MACIUC, on behalf of the LHCb collaboration

Horia Hulubei National Institute of Physics and Nuclear Engineering

CERN Workshop: Results and prospects of forward physics at the LHC: Implications for the study of diffraction, cosmic ray interactions, and more

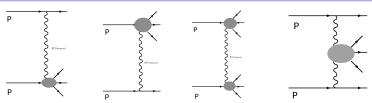
February 11th, 2013




Outline

- LHCb Detector
- Diffractive Events, Rapidity Gaps
- 2 Energy Flow Study
 - Event Classes, MC Generators, Data Analysis
 - Results of Energy Flow Measurement arXiv 1212.4755
- Other SoftQCD Measurements
 - Prompt Hadron Production Ratios Eur. Phys. J. C 72 (2012) 2168
 - Charged Particle Multiplicities Eur. Phys. J. C 72 (2012) 1947
- 4 Summary and Conclusions

LHCb Detector

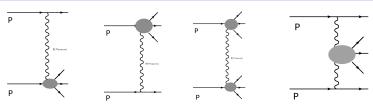


- Single arm spectrometer.
- Stations:
 - VErtex LOcator (VELO);
 - 4 tracker stations;
 - 4 Tm integrated field;
 - Calorimeters;
 - RICH detectors;
 - Muon system.
- Precise measurements:
 - Impact parameter resolution \approx 20 μ m for high- p_T .
- Exact Particle IDentification (PID) and tracking in a unique pseudorapidity range.

JINST 3 (2008) S08005



Diffractive Events, Rapidity Gap, Central Exclusive


D1 Single Dissociation 1 D2 Single Dissociation 2 D3 Double Dissociation D4 Central Exclusive Production (CEP) For D4 See tomorrow's LHCb talk on "LHCb: Central Exclusive Production, results and prospects"

- Single Dissociation (SD) and Double Dissociation (DD) diffractive events considered in energy flow analysis, CEP as higher order effect is not.
- Diffraction in studied in context of softQCD at LHCb, with very small X_{Bj} and low Q^2 .
- Given the colorless nature of the Pomeron exchange, the final state topology of a typical diffractive event displays: a Large Rapidity Gap as signature.

- * Collision vertex deep inside VELO;
- * VELO track sample split in backward
- $\eta \in [-3.5, -1.5]$ and forward tracks $\eta \in [1.9, 4.9]$.

Diffractive Events, Rapidity Gap, Central Exclusive

D1 Single Dissociation 1 D2 Single Dissociation 2 D3 Double Dissociation D4 Central Exclusive Production (CEP) For D4 See tomorrow's LHCb talk on "LHCb: Central Exclusive Production, results and prospects"

- Single Dissociation (SD) and Double Dissociation (DD) diffractive events considered in energy flow analysis, CEP as higher order effect is not.
- Diffraction in studied in context of softQCD at LHCb, with very small X_{Bj} and low Q².
- Given the colorless nature of the Pomeron exchange, the final state topology of a typical diffractive event displays: a Large Rapidity Gap as signature.

Backward VELO acceptance usefulness in context Large Rapidity Gap: Events without particle in pseudorapidity range of [-3.5, -1.5] are predominantly diffractive $\approx 95\%$;

Outline

Energy Flow: Event Classes, MC Generators, Data Analysis

arXiv 1212.4755

• Energy flow is measured within the forward η -acceptance [1.9, 4.9] where momentum is precisely determined.

Reconstructed Event Classes

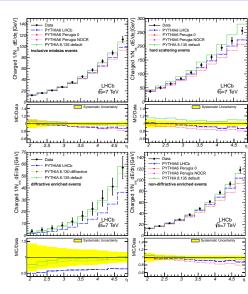
- Minimum Bias inclusive (MB) 1 or more tracks in [1.9, 4.9] and p > 2 GeV/c.
- Hard scattering 1 or more tracks with $\eta \in [1.9, 4.9]$ and $p_T > 3$ GeV/c.
- Diffractive enriched same as MB but no track with $\eta \in [-3.5, -1.5]$.
- non-Diffractive enriched same as MB but with one or more backward tracks $\eta \in [-3.5, -1.5].$
- Typically, diffractive enriched and non-diffractive MC samples have a purity of: ≈ 70 % and ≈ 90 %, respectively.
 - * Mostly due to unreconstructed particles in the backward acceptance.

Energy Flow: Event Classes, MC Generators, Data Analysis

MC Generators and Samples

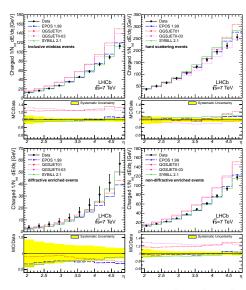
- PYTHIA 6 T.Sjöstrand, S. Mrenna, P. Skands, J. High Energ. Phys. 05, 026 (2006).
- PYTHIA8 T.Sjöstrand, S. Mrenna, P. Skands, Comput. Phys. Commun. 178 850 (2008).
- LHCb MC tuning of PYTHIA 6.4, I. Belyaev et al. IEEE Nucl. Sci. Symp. Conf. Rec. (2010), 1155.
- Perugia 0 and Perugia NOCR of PYTHIA 6, P. Z. Skands, Phys. Rev. D 82 (Oct., 2010) 074018
- Cosmic-Ray hadronic interaction models:
 - EPOS: T. Pierog and K. Werner, Nucl. Phys. Proc. Suppl. 196 (2009) 102;
 QGSJET: S. Ostapchenko, Status of QGSJET, AIP Conf. Proc. 928 (2007) 118;
 SYBILL: E.-J. Ahn et al., Phys. Rev. D80 (2009) 094003
- Fully simulated and reconstructed MC samples:
 - PYTHIA6 LHCb, Perugia0, and Perugia NOCR the Perugias have diffractive events suppressed at generator level - were selected to describe 3 events classes.
 - PYTHIA6 LHCb and PYTHIA8.130 the latter with diffractive events only - to describe the diffractive enriched class.
- @ Generator level only : PYTHIA8.135 and cosmic-ray generators.

- Data sample used is Minimum Bias: $0.1~{\rm nb^{-1}}$ 2010 run at 7 TeV - very low pile up $\approx 5~\%$.
- Charged component is directly measured and unfolded from reconstruction to generator level (see averages in next item).
- Neutral component is obtained from simulation and scaled with data:
 - Averaged results from PYTHIA6 LHCb and Perugia0/NOCR used for MB, hard scattering, and non-diffractive classes;
 - For diffractive enriched sample: PYTHIA6 LHCb tune and PYTHIA8 results are averaged.
 - Subsequently, upper results are corrected with calorimeter measurements and constrained by the charged component estimates.
 - Differential energy flow measured in LHCb:


$$rac{1}{ extstyle N_{ extstyle int}} rac{d extstyle E_{total}}{d\eta} \Leftrightarrow rac{1}{\Delta\eta} \left(\sum_{i=1}^{ extstyle N_{part},\eta} extstyle E_{i,\eta}
ight), \quad \Delta\eta = 0.3 ext{ and } \eta \in \llbracket 1.9, 4.9
bracket$$

Charged Component of Energy Flow

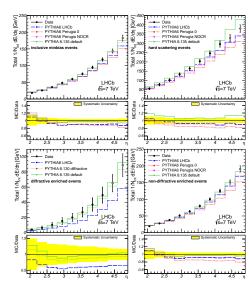
- Charged component for all 4 event classes;
- LHCb data extrapolated to generator level vs PYTHIA tunes results;
- Error estimate for data are mostly systematic, with statistic errors much smaller;
 * A dominating effect is the model dependence, especially for diffractive sample;
- PYTHIA8 agrees with diffractive events:
- PYTHIA8 overestimates the hard scattering;
- PYTHIA6 tunes underestimate the energy flow for high η in all samples;



arXiv 1212.4755

Charged Component of Energy Flow

- Cosmic-Ray models results superimposed on same data;
- QGSJET models overestimates the soft-p_T component in MB inclusive and non-diffractive;
- All models tend to underestimate the diffractive component;
- SYBILL reproduces the best all 4 cases, though overall there is a visible disagreement with diffraction result.

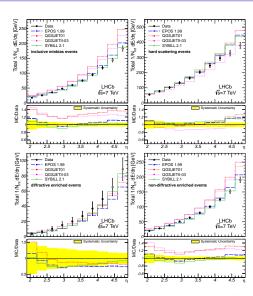

arXiv 1212.4755

Total Energy Flow

- Total energy flow for all 4 event classes:
- LHCb data vs PYTHIA tunes results:
- Again PYTHIA8 agrees with diffractive events, but not with the hard-pT events, where it overestimates the energy flow;
- PYTHIA6 underestimates the energy flow at high- η for all cases.

Conclusions regarding PYTHIA tunes

- Among those tried, there was no PYTHIA tune which describes all 4 components;
- PYTHIA8 give best agreement in general;
- Extra tuning needed, and higher order corrections as CEP contributions might account for the seen differences.


arXiv 1212.4755

Total Energy Flow

- Total energy flow for all 4 event classes;
- QGSJET models overestimates the soft-p_T component in MB inclusive and non-diffractive;
- SYBILL reproduces the best all 4 cases, this time there is a more pronounced disagreement in last 2 high-η bins for the hard component.

Conclusions for Cosmic-Ray Generators

- EPOS and especially SYBILL agree in general with LHCb data:
- Yet, not all cases agree with SYBILL over all LHCb η range [1.9, 4.9].
- As for PYTHIA, the Cosmic-ray models might have to consider higher order effects to be fully in agreement with LHCb data for softQCD region - low-X_{Bi} and low-Q².

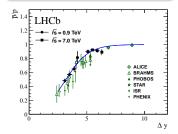
SoftQCD: Prompt Hadron Production Ratios

Eur. Phys. J. C 72 (2012) 2168

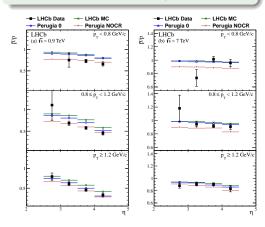
LHCb has measured 6 ratios of distinct prompt hadrons:

$$\frac{\bar{p}}{p}$$
, $\frac{\pi^{-}}{\pi^{+}}$, $\frac{K^{-}}{K^{+}}$, $\frac{p+\bar{p}}{\pi^{+}+\pi^{-}}$, $\frac{K^{+}+K^{-}}{\pi^{+}+\pi^{-}}$, $\frac{p+\bar{p}}{K^{+}+K^{-}}$

- $\frac{\bar{p}}{p}$ is essential in describing the Baryon Number Transport (BNT),
 - * Probe of hadronization in the forward region.
 - ★ Essential in tuning MC Generators.
- Data used have: $0.3 \mathrm{nb}^{-1}$ at $\sqrt{s} = 900$ GeV and $1.8 \mathrm{nb}^{-1}$ at 7 TeV.
- In LHCb, two RICH detectors allow separation of $p/K/\pi$ extracting the PID.
- Main error on ratios is systematic and dominated by PID uncertainties.
 - due to size limitation on calibration samples in softQCD data


SoftQCD: Prompt hadron production ratios

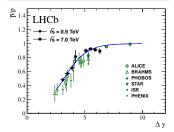
Eur. Phys. J. C 72 (2012) 2168


rapidity loss $\Delta y = y_{beam} - y_{particle}$ $y_{beam} = 8.9(6.9)$ at 7 (0.9) TeV.

LHCb data allow for a much better fit precision and are complementary to ALICE data.

First time measurement in this Δy range.

- ★ BNT at 0.9 and 7 TeV for 3 p_T ranges;
- \star LHCb results are more in agreement with PYTHIA6 Perugia NOCR tune than PYTHIA6 LHCb and Perugia 0 tunes.

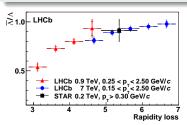

SoftQCD: Prompt hadron production ratios

Eur. Phys. J. C 72 (2012) 2168

rapidity loss $\Delta y = y_{beam} - y_{particle}$ $y_{beam} = 8.9(6.9)$ at 7 (0.9) TeV.

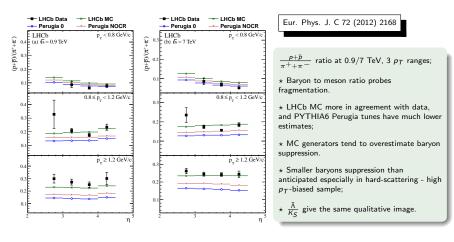
LHCb data allow for a much better fit precision and are complementary to ALICE data.

First time measurement in this Δy range.

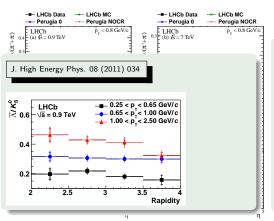


J. High Energy Phys. 08 (2011) 034

An older measurement of the baryon ratio $\frac{\bar{\Lambda}}{\Lambda}$ has similar dependence on rapidity loss variable like $\frac{\bar{P}}{2}$:


* Qualitatively no difference, the two ratios close.

The two ratios are independent probes of the same baryon number transport process.


SoftQCD: Prompt Hadron Production Ratios

Baryon to Meson Ratio and Light Baryon Suppression at 0.9 and 7 TeV

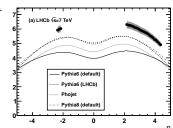
SoftQCD: Prompt Hadron Production Ratios

Baryon to Meson Ratio and Light Baryon Suppression at 0.9 and 7 TeV

Eur. Phys. J. C 72 (2012) 2168

 $\frac{p+\bar{p}}{\pi^++\pi^-}$ ratio at 0.9/7 TeV, 3 p_T ranges;

- * Baryon to meson ratio probes fragmentation.
- * LHCb MC more in agreement with data, and PYTHIA6 Perugia tunes have much lower estimates;
- * MC generators tend to overestimate baryon suppression.
- \star Smaller baryons suppression than anticipated especially in hard-scattering high $p_T\text{-biased}$ sample;
- $\star \frac{\Lambda}{K_S}$ give the same qualitative image.

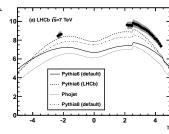


SoftQCD: Charged Particle Multiplicities

Eur. Phys. J. C 72 (2012) 1947

- LHCb data on charge track multiplicities.
 - * LHCb Minimum Bias data at 7 TeV low pile-up,
- lack VELO fiducial region with high track reconstruction efficiency spanned by η :
- $\eta \in [-2.5, -2]$ and $\eta \in [2, 4.5]$
- Two samples were selected:
 - a MinBias inclusive sample and its hard- $p_{\mathcal{T}}$ subsample.
 - $\star p_T > 1~{\rm GeV/c}$ for at least 1 particle in the forward region.

Inclusive MinBias sample


- Error on data dominated by systematic effects;
 * track efficiency uncertainty in VELO.
- \bullet prepresents the charged particle density over η bin.

Inclusive sample is poorly described by PYTHIA6 and PYTHIA8 tunes, and Phojet;

Hard scattering sample is better described, nevertheless generator results fail to reproduce the exact shape of PDF.

Models underestimate charged particle production.

$Hard-p_T$ sample

Summary and Conclusions

- **1** The large LHC collision energy allows mapping in a previously out of the reach phase space region with very low- X_{Bj} and low- Q^2 .
- We were able to capitalize on the very high precision measurements and on the unique pseudorapidity range of LHCb to study in detail the softQCD processes.
 - Diffractive, hard scattering, and non-diffractive events were separated and the energy flow observable was measured.
 - Various prompt hadron ratios were measured, too.
 - Highlighted $\frac{\bar{p}}{p}$ baryon number transport was obtained for the first time in the rapidity loss range of [3.1, 6.3].
 - Prompt charge particle multiplicities distribution.
- The generator results found to:
 - \star Underestimate the energy flow at high η .
 - \star Overestimate the baryon suppression, especially in the hard p_T ranges.
 - * Underestimate particle multiplicities.
- SoftQCD analyses at \sqrt{s} =7 (0.9) TeV are expected to be supplemented soon by others at 8 TeV and 2.76 TeV, and a pA sample is prepared for analysis, too.

Outline

Backup Slides

For each $\Delta \eta$, main assumption:

$$\Delta EF_{Neutral,PV} \propto \Delta EF_{Charged,PV}$$

at collision's primary vertex (PV), hence after unfolding with detection efficiency and acceptance.

$$\Delta \textit{EF}_{\textit{Neutral},\textit{PV}} = \Delta \textit{EF}_{\textit{Charged},\textit{PV}} \times \frac{\Delta \textit{EF}_{\textit{Neutral},\textit{gen}}}{\Delta \textit{EF}_{\textit{Charged},\textit{gen}}}$$

where $\Delta \textit{EF}_{\textit{Neutral},\textit{gen}}$, and $\Delta \textit{EF}_{\textit{Charged},\textit{gen}}$ are the generator results for these quantities in corresponding $\Delta \eta$.

Extra correction:

$$\Delta \textit{EF}_{\textit{Neutral},\textit{PV}} = \Delta \textit{EF}_{\textit{Charged},\textit{PV}} \times \frac{\Delta \textit{EF}_{\textit{Neutral},\textit{gen}}}{\Delta \textit{EF}_{\textit{Charged},\textit{gen}}} \times \frac{1 + \textit{R}_{\textit{data},\textit{RECO}}}{1 + \textit{R}_{\textit{MC},\textit{RECO}}}$$

where

$$R_{data,RECO} = \frac{\Delta \textit{EF}_{\textit{calorimeter}}, \textit{data}}{\Delta \textit{EF}_{\textit{Charged raw}}, \textit{data}}$$

and

$$R_{MC,RECO} = \frac{\Delta \textit{EF}_{\textit{calorimeter}}, \textit{simulated}}{\Delta \textit{EF}_{\textit{Charged raw}}, \textit{simulated}}$$

- EF_{calorimeter, data} measured energy flow through calorimeter in data;
- EF_{calorimeter, simulated} reconstructed energy flow through calorimeter in simulation;
- EF_{Charged raw,data} raw estimate of charge energy flow in data, before unfolding to PV.
- EF_{Charged raw, simulated} reconstructed energy flow for charged particles in simulation.