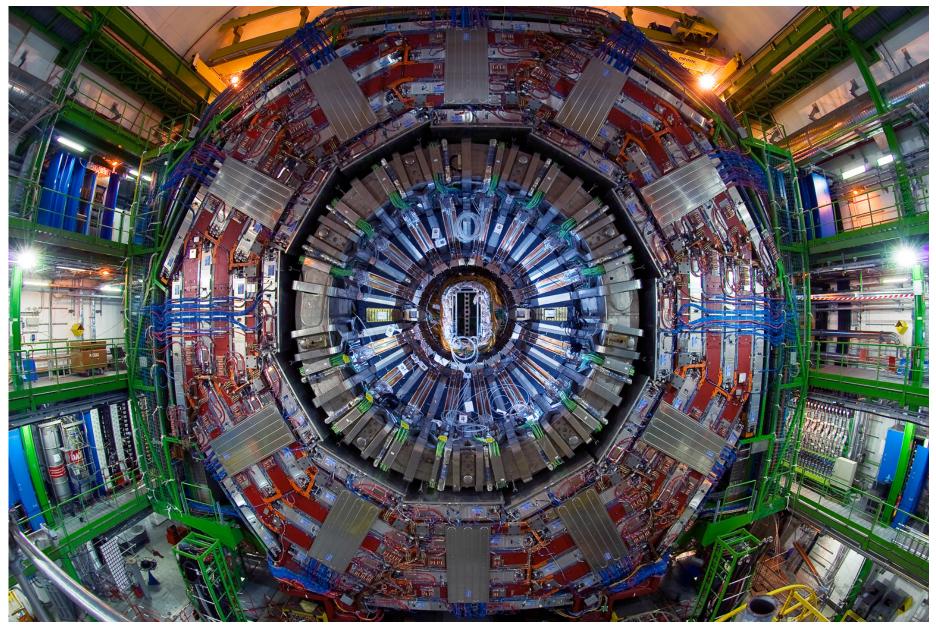


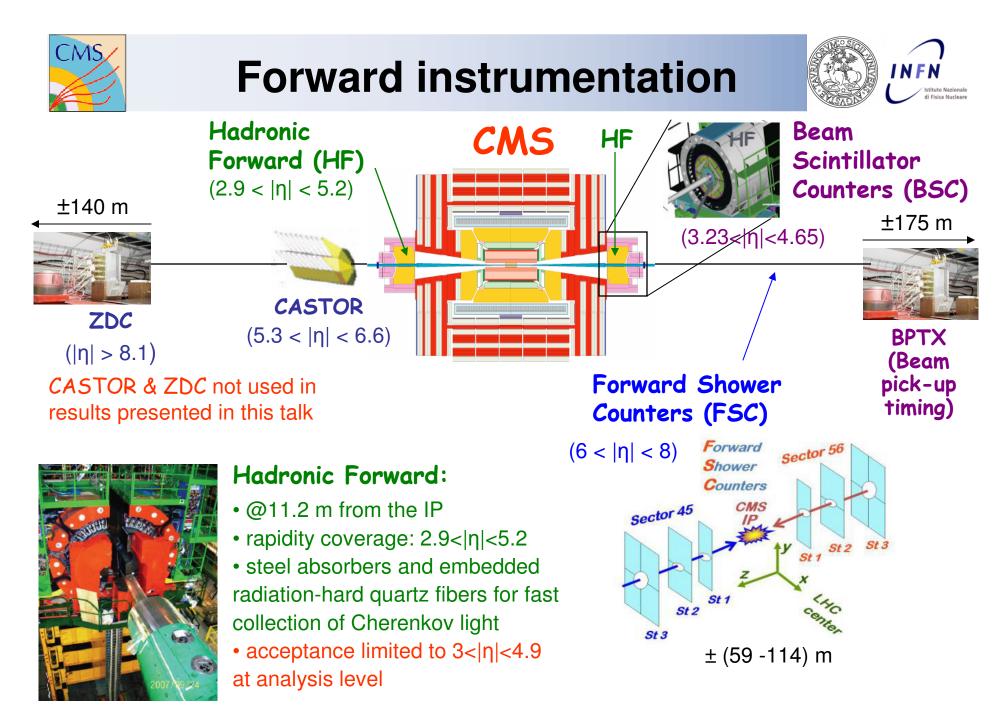
Workshop on Results and prospects of forward physics at the LHC

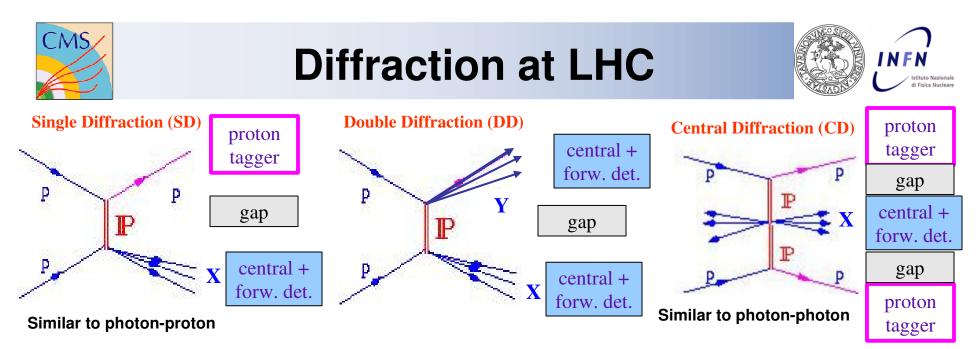
CMS results on hard exclusive and diffractive processes

Ada Solano Univ. of Torino and INFN

On behalf of the CMS Collaboration



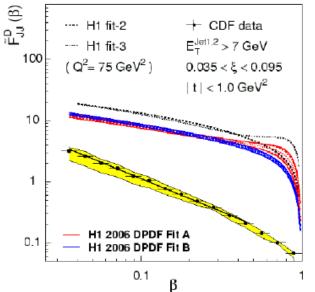

- CMS detector and forward instrumentation
- Evidence for hard diffraction:
 - diffractive dijet production
 - W/Z events with (pseudo-)rapidity gaps
- Central exclusive production:
 - exclusive γγ production
 - exclusive e⁺e⁻, µ⁺µ⁻, WW production


CMS detector

11/02/2013

Absence of colour flow between the proton(s) and the system X implies large gap(s) in the rapidity distribution of the hadronic final state: \rightarrow require absence of signal in the forward detectors (if no pile-up!) (otherwise, proton taggers are required \rightarrow not yet there)

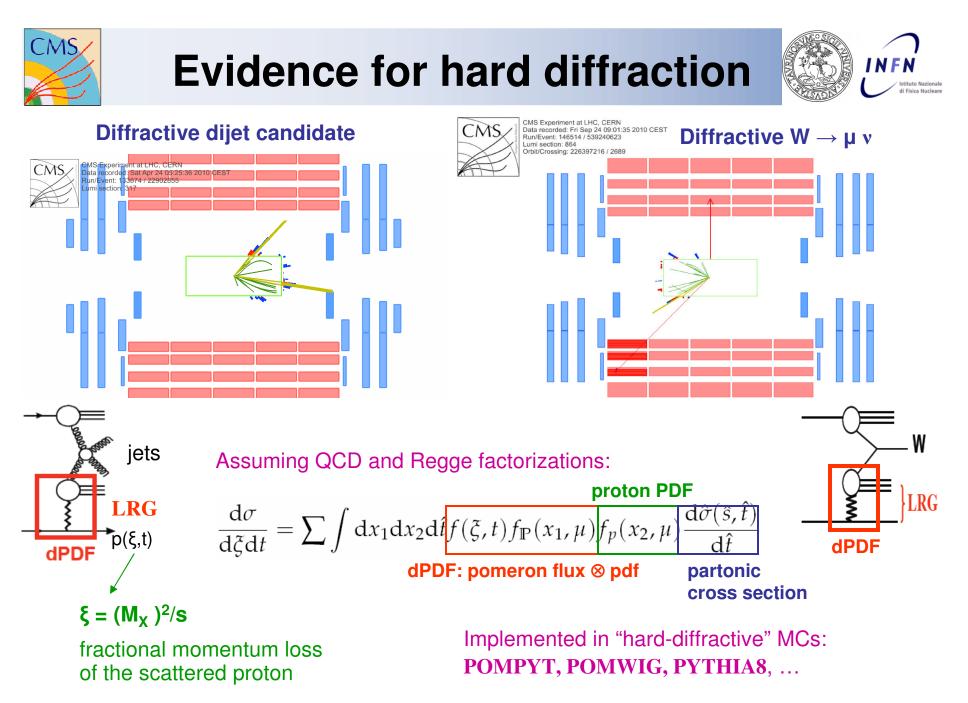
• Inclusive diffraction represents a large fraction of σ_{tot} ! (dominated by SD events pp \rightarrow Xp) Seen at UA8, HERA, Tevatron, and now at LHC!


- Diffraction also occurs in the presence of a hard scale: jets, W, Z, heavy quarks, …
 → tool to study (perturbative) QCD and the structure of the proton
- In pp interactions, rescattering between spectators breaks factorization
 - → need to measure rapidity gap survival probability !

Factorization breaking and gap survival probability

CDF, PRL 84 (2000) 5043 + P.Newman/H1

Diffractive dijet measurement in ppbar by CDF


Comparison with NLO predictions with **HERA DPDFs as input**:

Significant **overestimation** (~ factor 10) of the data by NLO calculations and **different shape**

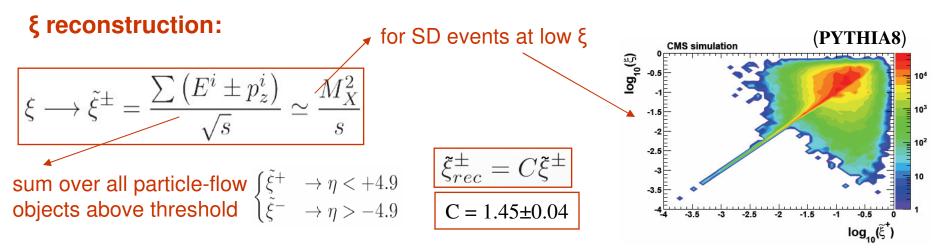
Factorisation not expected to hold for diffractive hadron-hadron collisions

 Violation of factorisation is understood in terms of (soft) rescattering between spectator partons, in initial and final states, suppressing the large rapidity gap: suppression ↔ 'rapidity gap survival probability'

- Models including rescattering corrections via multi-pomeron exchanges are able to describe the suppression observed [KKMR, EPJ C21 (2001) 521]
- Rapidity gap survival probability essential for LHC!

Diffractive dijet production: event selection & ξ reconstruction

PRD 87 (2013) 012006


Sample: 2.7 nb⁻¹ of 2010 data at 7 TeV, taken at low instantaneous luminosity \rightarrow average number of pile-up interactions per event is 0.09

Event selection:

- good quality primary vertex
- beam related background and noise rejection
- at least 2 jets with $p_T>20~GeV$ and axes within $|\eta|<4.4$
- $\eta_{max} < 3 \ (\eta_{min} > 3)$ to enhance the diffractive contribution

 $\eta_{max/min}$ = pseudorapidity of the most forward/backward particle-flow object in the calorimeter

 \rightarrow this selection corresponds to a gap $\Delta\eta\sim$ 1.9 in the HF calorimeter acceptance

11/02/2013 ForwardPhysicsLHC - CMS results on hard exclusive and diffractive processes - A. Solano

ξ distribution

9

PRD 87 (2013) 012006

Distributions are obtained as a function of $\tilde{\xi}^+$ and $\tilde{\xi}^-$, and averaged Before $\eta_{max/min}$ cut CMS, $\sqrt{s} = 7 \text{ TeV}$, L = 2.7 nb⁻¹, pp \rightarrow jet₁ jet₂, $|\eta^{j_{1,j_2}}| < 4.4$, $p_{\tau}^{j_{1,j_2}} > 20 \text{ GeV}$ 3**b/d**β Data are fitted to different MC DATA DATA PYTHIA6 D6T ND + POMPY1 PYTHIA6 Z2 ND + POMP PYTHIA6 Z2 ND PYTHIA6 D6T ND combinations ND+SD to obtain the POMPYT (x0 23) \$ POMPYT (v0 17) SI relative contributions of 10⁵ diffractive and non-diffractive 104 components 10³ Note that different MC tunes would PYTHIA8 tune 1 ND + PYTHIA8 SD+DD (x2.5) PYTHIA8 tune 1 ND imply considerable variations in PYTHIA8 SD+DD (x2.5) relative yields 10 10-4 10 10 10-2 10⁻² 10 ξ After $\eta_{max/min}$ cut CMS, **γ**s = 7 TeV, L=2.7 nb⁻¹, pp→jet₁jet₂, |η^{i1,j2}| < 4.4, p₂^{i1,j2} > 20 GeV dN/dễ A combination of PYTHIA6 ND (Tune Z2) and POMPYT SD (scaled by 0.23!) results in the Energy scale uncertainties best description of the data 10⁵ Suppression of events with high-ξ values 10⁴ after $\eta_{max} < 3$ (or $\eta_{min} > -3$) selection, 🜢 DATA while low-ξ region is mostly unaffected 10^{3} PYTHIA6 Z2 ND + POMPYT (x0.23) SD PYTHIA6 Z2 ND + POMPYT (x0.23) SD ຖ___< 3 (or ຖ__> -3) \rightarrow extract dijet cross section in first 3 bins 10^{-3} 10⁻² 10⁻¹ ξ

11/02/2013 ForwardPhysicsLHC - CMS results on hard exclusi

Dijet cross section

Three ξ bins: (0.0003,0.002); (0.002,0.0045); (0.0045,0.01) Data corrected for pile-up

CMS, $\sqrt{s}=7$ TeV, L = 2.7 nb⁻¹, pp \rightarrow jet₁jet₂, $|\eta^{j_{1,j_2}}| < 4.4$, $p_{\perp}^{j_{1,j_2}} > 20$ GeV doj/dễ (µb) Excess of events at low ξ w.r.t. non-diffractive MCs : \rightarrow evidence for hard diffraction 10 **POMPYT and POMWIG (LO) diffractive** MC's as well as the NLO calculation from DATA **POWHEG**, all using H1 fit B dPDFs, are a PYTHIA6 Z2 ND factor ~5 above the data in lowest ξ bin YTHIA8 tune1 ND 10⁻¹ OMPYT CTEQ6L1 & H1 Fit B POMWIG CTEQ6L1 & H1 Fit B **PYTHIA8** diffractive cross section is PYTHIA8 SD+DD POWHEG+PYTHIA8 CTEQ6M & H1 Fit B considerably lower due to different 10⁻³ 10⁻² pomeron flux parametrisation ĩξ In the first bin dominated by diffraction: Assuming 41% of proton dissociation in data, $\sigma_{\text{meas}}/\sigma_{\text{MC}} = 0.21 \pm 0.07$ (LO MC) the rapidity gap survival probability

 $\sigma_{\text{meas}} / \sigma_{\text{MC}} = 0.14 \pm 0.05$ (NLO MC)

which can be considered as **upper limits** of the rapidity gap survival propability (cross section also includes DD) can be estimated:

 $S^2 = 0.12 \pm 0.05$ (LO) $S^2 = 0.08 \pm 0.04$ (NLO) [Size similar to that measured at Tevatron but different ξ range!]

10

PRD 87 (2013) 012006

Systematics uncertainties

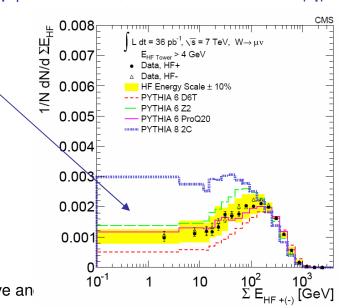
W/Z events with an η gap

EPJ C72 (2012) 1839

Sample: 36 pb⁻¹ of 2010 data at 7 TeV, taken with increasing instantaneous luminosities

- \rightarrow sample divided in 3 periods with different pile-up conditions
- PU contribution studied with zero-bias data samples and well reproduced
- by luminosity-dependent MC simulations

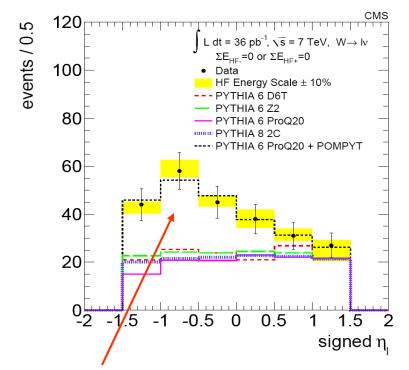
Event selection:


- good quality primary vertex; events with more than one vertex are rejected to limit PU
- beam related background and noise rejection
- identification of W and Z events (independent of instantaneous luminosity and BG < 1%):
- $W \rightarrow Iv$: one isolated lepton within $|\eta| < 1.4$ and $p_T > 25 \mbox{ GeV}$; missing $E_T > 30 \mbox{ GeV}$
- $Z \rightarrow II$: two isolated leptons with opposite charge and p_T > 25 GeV; a least one within |η| < 1.4; invariant mass 60 < M_{II} < 120 GeV
- energy deposition in either HF+ or HFless than 4 GeV to select LRG events (Δη > 1.9)
 → diffractive component in W/Z data set

Fraction of W/Z events with a forward gap over HF:

W→lv: 1.46 ± 0.09(stat.) ± 0.38(syst.) %

Z→II: 1.57 ±0.25(stat.) ±0.42(syst.) %


11

$W \rightarrow Iv$ events with an η gap

EPJ C72 (2012) 1839

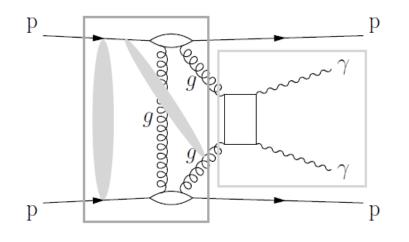
Evidence for diffractive W production in the data

From a fit with PYTHIA ND and POMPYT SD: fraction of W diffractive events in LRG sample

 $f_{SD} = 50.0 \pm 9.3(\text{stat.}) \pm 5.2(\text{syst.})\%$

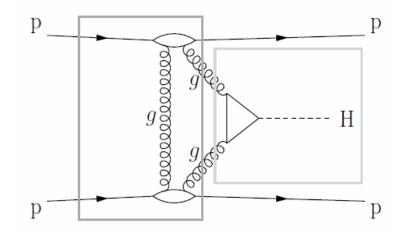
Signed lepton η distribution in events with a LRG: $\eta_{I} < 0$: lepton and gap are in opposite hemispheres $\eta_{I} > 0$: lepton and gap are in the same hemisphere

Large asymmetry observed:


diffractively produced W/Z are boosted in the direction opposite to the gap, as simulated by POMPYT

> dPDFs peak at smaller x than the proton PDFs \rightarrow bosons are boosted in the direction of the parton with larger x, which is typically the direction of the dissociated proton, opposite to the gap

Central exclusive production



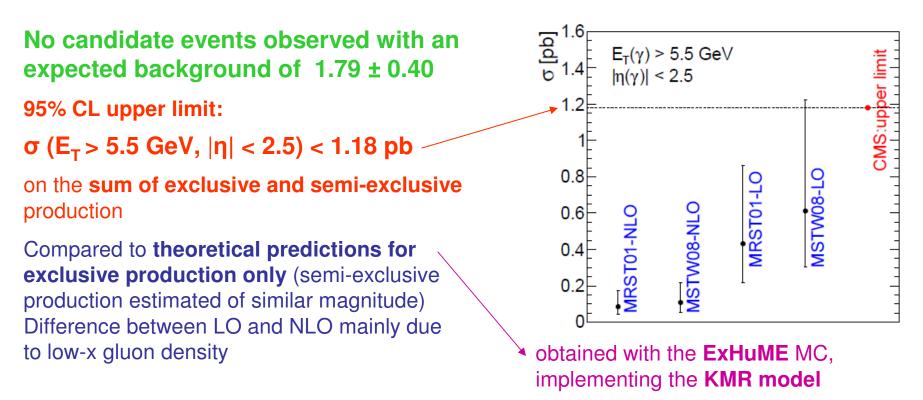
Exclusive $\gamma\gamma$ events are produced via double pomeron exchange or, in partonic terms, as $gg \rightarrow \gamma\gamma$ via a quark loop, plus an additional 'screening' gluon. Contributions from $q\overline{q} \rightarrow \gamma\gamma$ and $\gamma\gamma \rightarrow \gamma\gamma$ are estimated less than 1% of $gg \rightarrow \gamma\gamma$

Semi-exclusive production if one or both protons dissociate into a low mass state

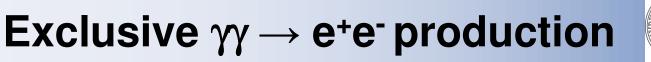
Exclusive γγ production is closely related to exclusive Higgs boson production

Since main theoretical uncertainties are common among different states, exclusive $\gamma\gamma$ production provides an excellent test of the theoretical predictions for Higgs central exclusive production

Exclusive $\gamma\gamma$ production

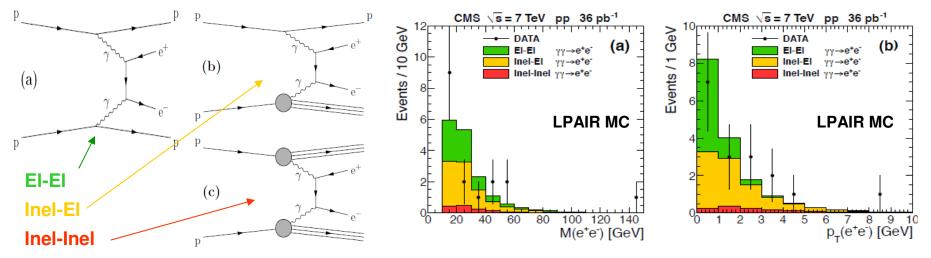


JHEP 11 (2012) 080


Sample: 36 pb⁻¹ of 2010 data at 7 TeV, using only data with low pile-up contamination

Event selection:

- exactly **2 photons** with $E_T > 5.5$ GeV and $|\eta| < 2.5$, balanced in E_T and back-to-back in ϕ
- cosmic-ray rejection
- exclusivity selection: no other particle in the region $|\eta| < 5.2$



JHEP 11 (2012) 080

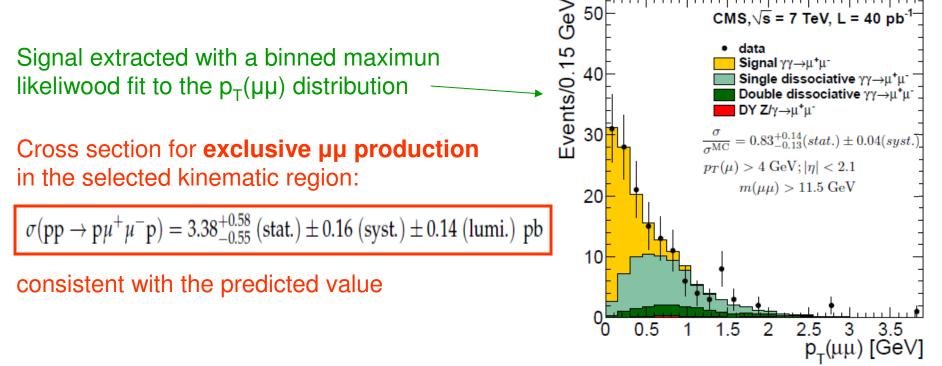
Sample: 36 pb⁻¹ of 2010 data at 7 TeV, using only data with low pile-up contamination same sample used for exclusive γγ event search

Event selection: very similar to the one applied for exclusive $\gamma\gamma$ analysis

- exactly 2 electrons of opposite charge, each with $E_T > 5.5$ GeV and $|\eta| < 2.5$, balanced in E_T and back-to-back in ϕ
- cosmic-ray rejection & **exclusivity** selection: no other particle in the region $|\eta| < 5.2$

17 exclusive or semi-exclusive event candidates observed, with an expected background of 0.85 \pm 0.28, consistent with the QED-based prediction by LPAIR of 16.3 \pm 1.3 events, providing a validation of the selection procedure for the $\gamma\gamma$ exclusive production search

Exclusive $\gamma\gamma \rightarrow \mu^+\mu^-$ production



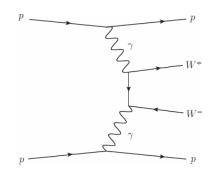
JHEP 01 (2012) 052

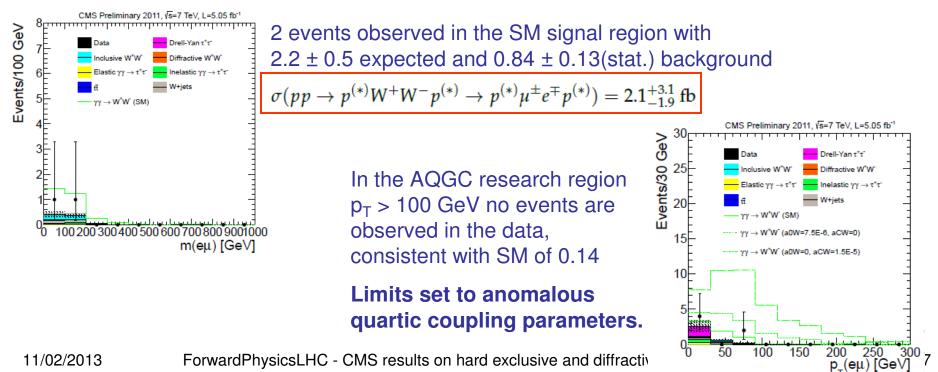
Sample: 40 pb⁻¹ of 2010 data at 7 TeV, with any pileup conditions

Event selection:

- exactly **2 muons** of opposite charge, with p_T > **4 GeV** and $|\eta|$ < **2.1**
- exclusivity selection: primary vertex with exactly 2 muons and no other track within 2 mm
- cosmic-ray rejection
- **m**(μμ) > **11.5 GeV** to reject Y photoproduction

Exclusive $\gamma\gamma \rightarrow W^+W^-$ production




CMS PAS FSQ-12-010

Sample: 5.05 fb⁻¹ of 2011 data at 7 TeV

Event selection:

- to limit the background, only consider the decay channel μe, using μμ as control sample
- exclusivity : µe vertex with no associated charged tracks
- dilepton trasverse momentum $p_T > 30$ GeV for SM signal region
- **p**_T > 100 GeV to study deviations from SM and look for the anomalous quartic gauge couplings

First measurements of hard diffraction at LHC:

 the dijet cross section was measured. Comparing the measured cross section to diffractive MC predictions based on dPDFs from HERA, an estimate of the gap survival probability was obtained

W/Z events with a pseudorapidity gap (Δη > 1.9) were observed.
 For most of these events, the charged leptons from W/Z decays are found in the hemisphere opposite to the gap, consistent with diffractive W/Z production

Central exclusive production:

- no exclusive or semi-exclusive γγ events were observed and an upper limit to the production cross section was set
- exclusive and semi-exclusive e⁺e⁻, μ⁺μ⁻, WW events were measured in agreement with the expectations, providing a valid check to the selection procedure of other exclusive processes

Analysis of CMS+TOTEM data

- July 2012 first pp common data taking @ √s = 8 TeV ~11h, 43 nb⁻¹ collected (~25 M events) special optics β*=90m, with ~100 bunches bi-directional exchange of triggers various triggers for Soft and Hard DPE
- Past weeks **pPb common data taking**
- These days new pp common data taking @ $\sqrt{s} = 2.76 \text{ TeV}$

Lots of potential studies and measurements ahead !

Backup slides

11/02/2013 ForwardPhysicsLHC - CMS results on hard exclusive and diffractive processes - A. Solano

20

Dijet cross section

PRD 87 (2013) 012006

Table 3: Differential cross section for inclusive dijet production as a function of $\tilde{\xi}$ for jets with $p_{\rm T}^{j1,j2} > 20 \,\text{GeV}$ and jet-axes in the pseudorapidity range $|\eta^{j1,j2}| < 4.4$.

$\widetilde{\xi}$ bin	$\mathrm{d}\sigma_{jj}/\mathrm{d}\widetilde{\xi}$ ($\mu\mathrm{b}$)
$0.0003 < \widetilde{\xi} < 0.002$	$5.0\pm0.9({\rm stat.})^{+1.5}_{-1.3}({\rm syst.})$
$0.002 < \widetilde{\xi} < 0.0045$	$8.2\pm0.9({\rm stat.})^{+2.2}_{-2.4}({\rm syst.})$
$0.0045 < \widetilde{\xi} < 0.01$	$13.5\pm0.9(stat.)^{+4.5}_{-3.1}(syst.)$

Uncertainty source	$0.0003 < \widetilde{\xi} < 0.002$	$0.002 < \widetilde{\xi} < 0.0045$	$0.0045 < \widetilde{\xi} < 0.01$
1. Jet energy scale	(+26; -19)%	(+21; -20)%	(+28; -16)%
2. Jet energy resolution	(+6;-4)%	(+4;-3)%	(+3;-2)%
3. PF energy, $p_{\rm T}$ threshold, C	(+7;-15)%	(+14;-8)%	(+12; -11)%
4. MC model uncertainty	(+5;-3)%	(+2;-14)%	(+3;-1)%
5. One-vertex selection	(+6;-0)%	(+0;-1)%	(+1;-0)%
6. Jet objects (Calorimeter, PF)	(+0;-4)%	(+0;-4)%	(+2;-4)%
7. $\tilde{\xi}^+$, $\tilde{\xi}^-$ difference	$\pm 8\%$	$\pm 8\%$	±11%
8. Trigger efficiency	$\pm 3\%$	$\pm 3\%$	±3%
9. Luminosity	$\pm 4\%$	$\pm 4\%$	$\pm 4\%$
Total error	(+30; -26)%	(+27;-29)%	(+33; -23)%

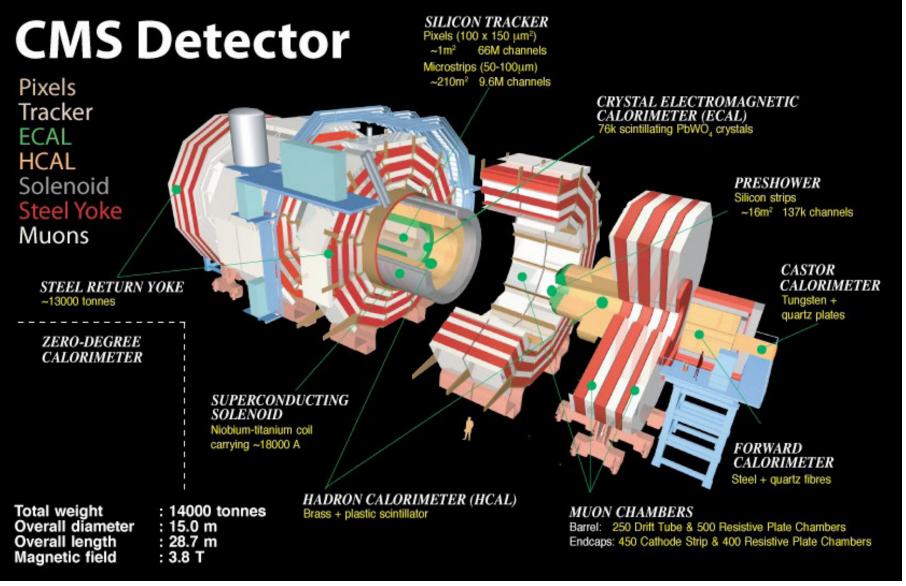
11/02/2013

ForwardPhysicsLHC - CMS results on hard exclusive and diffractive processes - A. Solano

JHEP 11 (2012) 080

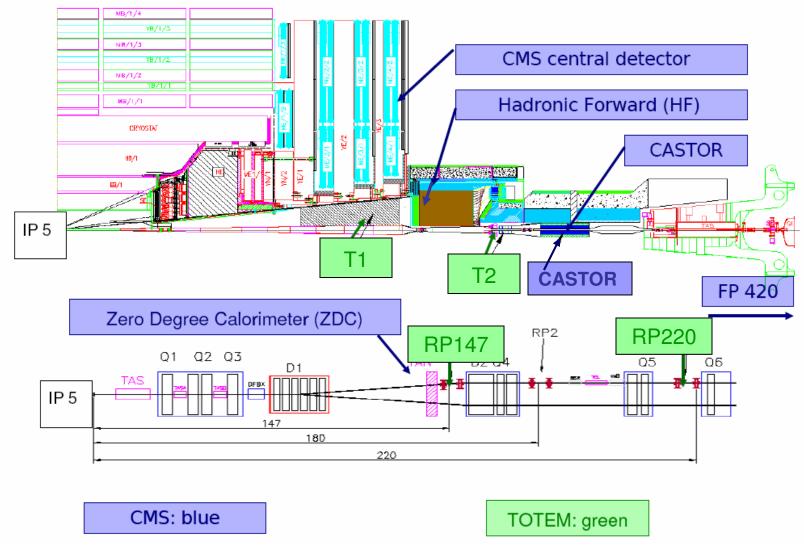
Table 1: Number of diphoton and dielectron candidates remaining after each selection step.

Diphoton analysis		Dielectron analysis		
Events rema	ining	Selection criterion	Events rema	ining
3 02	23 4 96	Trigger	3 02	23 496
1 68	33 526	Electron reconstruction	13	32 271
4	40 692	Electron identification		1668
3	34 2 34	Cosmic-ray rejection	_	1 321
	0	Exclusivity requirement		17
	Events rema 3 02 1 68	Events remaining 3 023 496 1 683 526 40 692 34 234	Events remainingSelection criterion3023496Trigger1683526Electron reconstruction40692Electron identification	Events remainingSelection criterionEvents remaining3023496Trigger3021683526Electron reconstruction1340692Electron identification3423434234Cosmic-ray rejection13


Table 4: Background event yields expected for both the diphoton and the dielectron analyses. The quoted uncertainties are statistical.

Diphoton analysis		Dielectron analysis		
Background	Events	Background	Events	
Non-exclusive	1.68 ± 0.40	Non-exclusive	0.80 ± 0.28	
Exclusive e ⁺ e ⁻	0.11 ± 0.03	Exclusive $Y(1S,2S,3S) \rightarrow e^+e^-$	Negligible	
Cosmic ray	Negligible	Cosmic ray	0.05 ± 0.01	
Exclusive $\pi^0\pi^0$ and $\eta\eta$	Negligible	Exclusive $\pi^+\pi^-$	Negligible	
Total	1.79 ± 0.40	Total	0.85 ± 0.28	

CMS detector


11/02/2013

ForwardPhysicsLHC - CMS results on hard exclusive and diffractive processes - A. Solano

Forward detectors at IP5

11/02/2013

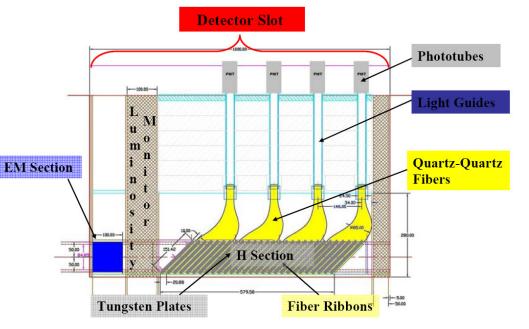
ForwardPhysicsLHC - CMS results on hard exclusive and diffractive processes - A. Solano

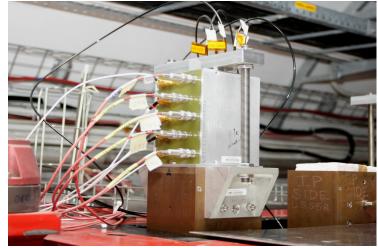
Hadron Forward calorimeter

- @11.2 m from the interaction point
- rapidity coverage: $2.9 < |\eta| < 5.2$
- steel absorbers and embedded radiation-hard quartz fibers for fast collection of Cherenkov light
- long (1.65 m) and short (1.43 m) fibers are placed alternately and run parallel to the beam axis along the absorbers

The CASTOR calorimeter

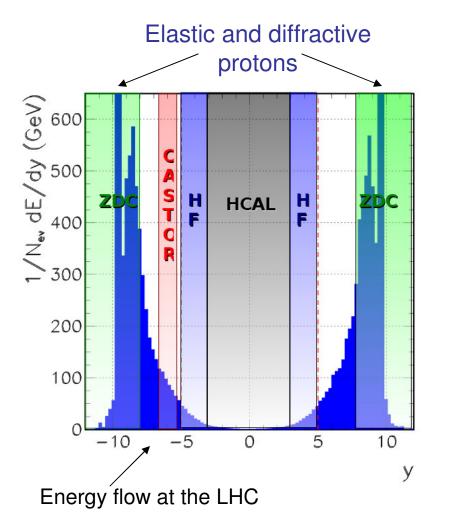
- rapidity coverage: 5.3 < |η/ < 6.6
 → enhances the hermiticity of CMS
- 14.37 m from the interaction point
- octogonal cylinder with inner radius 3.7 cm, outer radius 14 cm and total depth $10.5 \lambda_1$
- signal collection through Cherenkov photons transmitted to PMTs through aircore lightguides
- W absorber & quartz plates sandwich, with 45° inclination with respect to the beam axis
- electromagnetic and hadronic sections
- 16 seg. in φ , 14 seg. in z no segmentation in η





The Zero Degree Calorimeter

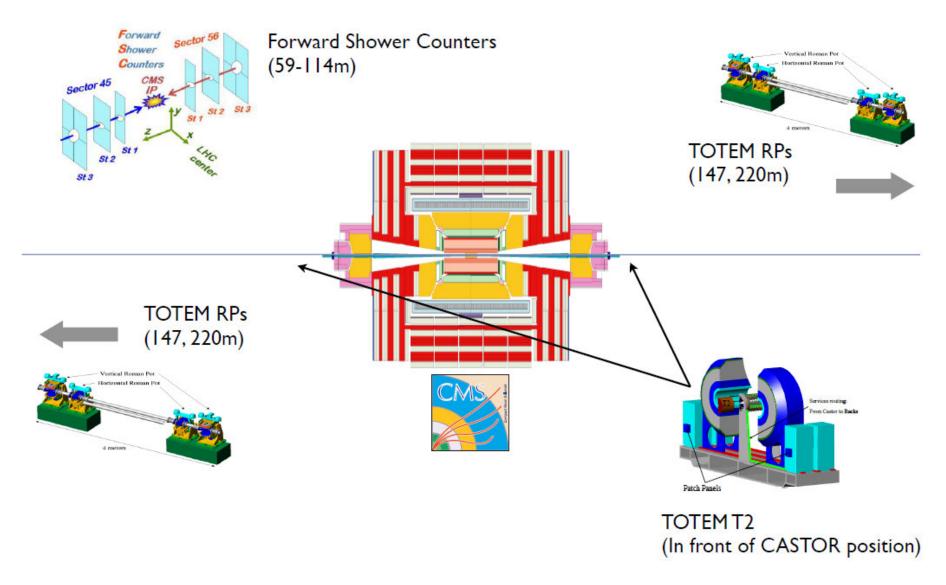
- 140 m from interaction point in TAN absorber
- Tungsten/quartz Cherenkov calorimeter with separate e.m.(19 X_0) and had.(5.6 λ_1) sections
- em: 5-fold horizontal seg. had: 4-fold seg. in z
- Acceptance for neutrals (γ, π^0, n) from $|\eta| > 8.1$ (100% for $\eta > 8.4$)



11/02/2013

Largest calorimetric rapidity coverage ever!

- Most energy is deposited between
 8 < | y | < 9
- Main CMS calorimeters: |y| < 5


Maximal rapidity at the LHC:

$$y_{max} = \ln \frac{\sqrt{s}}{m} \approx 11.5$$

CMS+TOTEM detectors

CMS+TOTEM

TOTEM+CMS joint data taking:

- 2-arm proton reconstruction, $\xi_{1,2}=\Delta p_1, 2/p_{1,2}$
- Prediction of mass to be seen in CMS from reconstructed protons:

 $M^2 = s \cdot \xi_1 \xi_2$

- Initial vs. final state comparison: $M_{TOTEM} = ? M_{CMS}$
- Prediction of central particle flow topology from leading protons (rapidity gaps) : $\Delta \eta_{1,2} = -\ln \xi_{1,2}$
- Large η-coverage:

CMS: $-5.5 < \eta < 5.5$ T1: $3.1 < |\eta| < 4.7$ T2: $5.3 < |\eta| < 6.5$ FSC: $6 < |\eta| < 8$