Exclusive Jets and Pomeron Structure

Maciej Trzebiński

Institute of Nuclear Physics Polish Academy of Sciences

Service de Physique des Particules Institut de Recherche Fondamentale sur l'Univers CEA Saclay

Diffractive Jet Production

Double Pomeron Exchange (DPE)

- two intact protons
- two jets

Double Pomeron Exchange (DPE)

- two intact protons
- photon + jet

DPE Jet-Gap-Jet

- two intact protons
- gap in rapidity between two jets

Exclusive

- Exclusive Production
- two intact protons
- no remnants
- two jets

Detection Methods

- 1. Gaps between jets and outgoing protons (not possible in high pile-up environment).
- 2. Intact proton tagging.

Double Pomeron Exchange Jet Production

DPE Jet Production

- Probe QCD and diffraction in a new kinematic domain.
- Jet production in DPE events: sensitivity to gluon density in Pomeron (especially at high β) in double tagged events.
- low dependence of production cross section on quark PDF.
- $\int L = 10 \text{ pb}^{-1}$ with low $< \mu >$ is enough to obtain some interesting informations about Pomeron structure when p_T of the leading jet > 200 GeV.

Leading Jet Transverse Momentum

Transverse momentum of the leading jet.

Mass fraction – mass of the jet system / missing mass (calculated from protons).

Double Pomeron Exchange Photon + Jet Production

C. Royon, M. Saimpert, Phys. Lett. in preparation

DPE γ + Jet Production

- Probe QCD and diffraction in a new kinematic domain.
- Constraints exist on the sum of quark density and the gluon distribution from F_2^D measurement (HERA) assuming the Pomeron is made of quarks and gluons.
- u=d=s and q=qbar have been assumed so far.
- Production highly depends on quark PDF.
- $\int L = 200 \text{ pb}^{-1}$ with low $< \mu >$ is enough to obtain some interesting informations about Pomeron structure.

d/u Results: $p_{T,jet}$ Differential CS Ratio

Central detector (ATLAS) measurements:

- Cross-sections integrated on 2.5 GeV bins.
- Cross-sections ratio varies by a factor 4.
- Jet Energy Scale (JES) systematics should compensate (but not Jet Energy Resolution).
- Low dependence on survival probability.
- ullet Statistical uncertainty driven by γ + jet.

d/u Results: Missing Mass Differential CS Ratio

Forward detector (AFP) measurements:

- Cross-sections integrated on 250 GeV bins.
- Cross-sections ratio varies by a factor 2.5.
- No impact of Jet Energy Scale (JES) and Jet Energy Resolution (JER).
- ullet Statistical uncertainty driven by γ + jet.

Double Pomeron Exchange Jet-Gap-Jet Production

C. Marquet, C. Royon, M. Trzebinski, R. Zlebcik, to be published in PRD

Diffractive jet-gap-jet event

- Cleaner test of BFKL model than usual JGJ measurement (events not polluted by proton remnants).
- Access to larger di-jets with a larger rapidity difference.
- $\int L = 300 \ \mathrm{pb^{-1}}$ with low $<\mu>$ is enough to make the test.

Event signature:

- two outgoing protons,
- two jets in opposite hemispheres,
- gap (symmetric in η) between jets.

Central Jets

The gap size distribution for non-diffractive jets and diffractive jet-gap-jet events.

The jet transverse momentum distribution for different gap sizes with AFP tag requirement.

Predictions

Exclusive Jet Production

M. Trzebinski, ATL-PHYS-SLIDE-2012-618

Exclusive Jet Production

Signature: two jets in central region + two intact protons + gap in rapidity between jet and proton (no remnants).

Theoretical description – KMR model.

- No Pomeron remnants.
- Measurement constrain theoretical models.
- Limits on exclusive Higgs production.
- $\int L = 300 \text{ fb}^{-1}$ with high $<\mu>\sim 50$ is enough to make the measurement.

Discriminating Power

Event selection:

- At least one proton tagged in each AFP station.
- Rapidity Difference $|y_{jj}-y_X|<0.075$ and Mass Fraction $0.9< M_{jj}/M_X<1.15$.
- Number of tracks outside the jet system < 4.
- Angle between two leading jets 2.9 $< \Delta \phi <$ 3.3.
- Missing mass $M_x < 550 \text{ GeV/c}^2$.
- The distance between hard vertex reconstructed by ATLAS and from the AFP time measurement $|\Delta z| < 3.5$ mm.

Number of Events

$$<\mu> = 23$$

$$<\mu> = 46$$

Summary

- Possibility of tagging intact protons provides cleaner experimental environment.
- One week of data taking with low pile-up roughly corresponds to $\int L = 100 \text{ pb}^{-1}$.
- Double Pomeron Exchange Jets Production:
 - Measure gluon density in Pomeron.
 - $\sigma \sim 5 \times 10^4$ pb for $p_{T,jet1} > 20$ GeV, low pile-up.
- Double Pomeron Exchange γ + Jet Production:
 - New constraints on quark densities difference.
 - $\sigma \sim 10$ pb for $p_{T,jet1} > 20$ GeV, low pile-up.
- Double Pomeron Exchange Jet-Gap-Jet Production:
 - Provide a test of the BFKL Pomeron.
 - $\sigma \sim 10^3$ pb for $p_{T,jet1} > 40$ GeV, low pile-up.
- Exclusive Jets Production:
 - Measure the cross-section, probe exclusive KMR mechanism to constrain predictions for the exclusive Higgs production.
 - $\sigma \sim 1$ pb for $p_{T,jet1} > 150$ GeV, high pile-up.