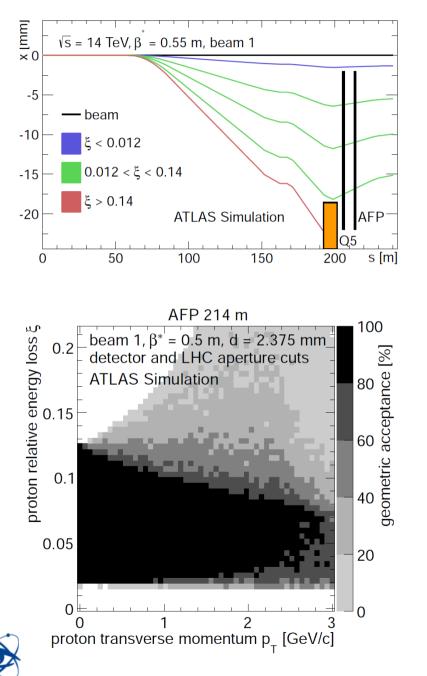
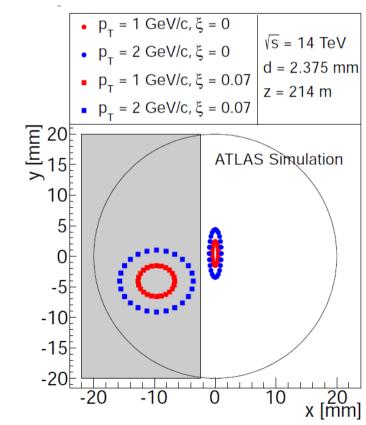
Exclusive production of WW with AFP

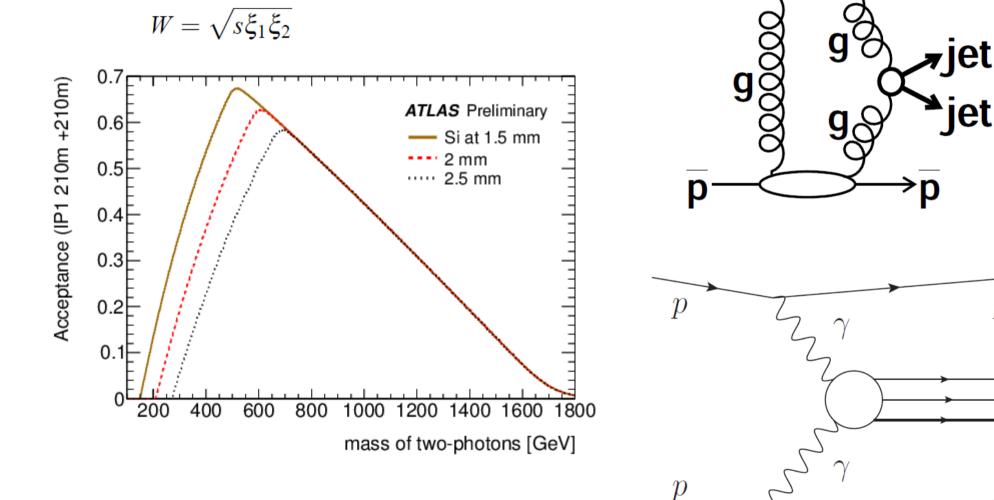
Oldřich Kepka Institute of Physics, Academy of Sciences, Prague On Behalf of AFP Working Group


February 12th, 2013, CERN

Outline


- Summary of proton detection capabilities at 210 m from IP
- Sensitivity to anomalous quartic gauge boson couplings
 - Analysis with no pile-up 210 + 420m
 - Analysis using full simulation of ATLAS with pile-up for 210 case
- Pile-up forward proton rates using MC
- Summary

Forward protons


- For increasing relative proton momentum loss $\xi \approx (1-E/E_0)$ protons scatter outside the ring
- Acceptance large for $0.012 < \xi < 0.14$
- *d* at 15*σ*: 2.3mm = 0.13x15 + 0.3 mm

_

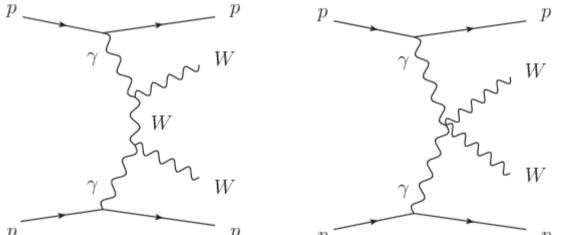
Acceptance

- Acceptance up to ~1TeV scale
- Very small acceptance below 350 GeV

Oldrich Kepka

p

p


>p

Exclusive QED production

VBS in exclusive mode

- AFP turn LHC pp machine into an effective photon-photon collider
 - But also gamma-pomeron
- Photon induced vector boson scattering process
 - No particle produced from underlying event involving MPI
 - No color flow possible jet gap as in VBF



Improving anomalous TGC/QGC constraints showed on have

- Exciting mainly for anomalous aQGC, sensitivity to aTGC comp

Cross sections for $\gamma\gamma$ processes as a function of the minimal $\gamma\gamma$ cms energy W_0

limits

Anomalous Quartic Gauge Coupling

• Stringent test of the electroweak symmetry breaking by proton tagging

SM: $\gamma\gamma$ WW BSM: $\gamma\gamma$ ZZ, $(\gamma\gamma\gamma\gamma)$

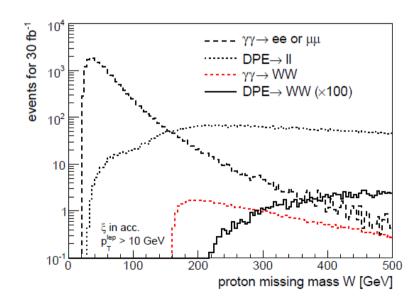
- aQGC $\gamma\gamma \rightarrow$ WW can be measured very precisely looking in deviations in m($\gamma\gamma$), or $p_{\tau}(lep)$ spectrum $\rightarrow \sim 10^{-6}$
- 4 orders of magnitude improvement wrt. LEP
 - Hadron level analysis considering diffractive background with primary int.

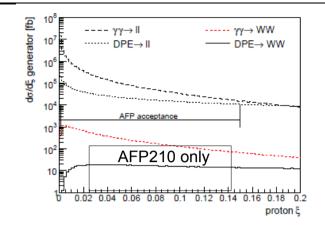
Couplings	OPAL limits	Sensitivity @ $\mathcal{L} = 30$ (200) fb ⁻		
	$[GeV^{-2}]$	5σ	$95\%~{ m CL}$	
a_0^W/Λ^2	[-0.020, 0.020]	$5.4 \ 10^{-6}$	$2.6 \ 10^{-6}$	
		$(2.7\ 10^{-6})$	$(1.4 \ 10^{-6})$	
a_C^W/Λ^2	[-0.052, 0.037]	$2.0 \ 10^{-5}$	$9.4 \ 10^{-6}$	
		$(9.6 \ 10^{-6})$	$(5.2 \ 10^{-6})$	
a_0^Z/Λ^2	[-0.007, 0.023]	$1.4 \ 10^{-5}$	$6.4 \ 10^{-6}$	
		$(5.5 \ 10^{-6})$	$(2.5 \ 10^{-6})$	
a_C^Z/Λ^2	[-0.029, 0.029]	$5.2 \ 10^{-5}$	$2.4 \ 10^{-5}$	
		$(2.0\ 10^{-5})$	$(9.2 \ 10^{-6})$	

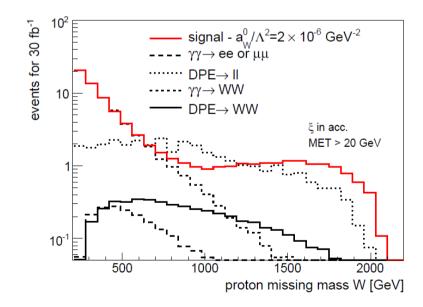
O. K. et al, Phys. Rev. D 81, 074003 (2010)

T. Pierzchala et al, Nucl. Phys. Proc. Suppl. 179-180 (2008) 257

• Effecti


- Conserve *C*, *P*, *T*, and custodial symmetries


$$\mathcal{L}_{\text{eff}}^{\text{BSM}} = - \frac{e^2}{8} \frac{a_0^W}{\Lambda^2} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^2}{16} \frac{a_C^W}{\Lambda^2} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+}) - \frac{e^2}{16 \cos^2 \theta_W} \frac{a_0^Z}{\Lambda^2} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha} - \frac{e^2}{16 \cos^2 \theta_W} \frac{a_C^Z}{\Lambda^2} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}$$

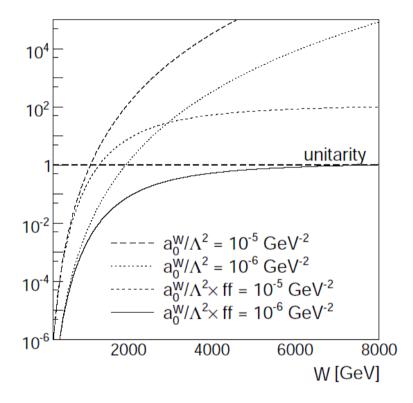


Details of the analysis

- Use both 210m and 420m detectors
- Consider: $\gamma\gamma$ and double pomeron exchanges
- Neglect pile-up
- Not a realistic scenario anymore
- Large rates of SM process at low mass

Implementation of the aQGC

New couplings violate unitarity, couplings need to be accompanied by Form factors regularizing the effect of cross section at high mass


$$a \rightarrow \frac{a}{[1 + (W_{\gamma\gamma}/2 \,\mathrm{TeV})^2]^2}$$

 Unitarity condition for anomalous coupling (J. P. Eboli) as a function of the invariant mass measured in AFP

$$\frac{1}{N} \left(\frac{\alpha a s}{16}\right)^2 \left(1 - \frac{4M_W^2}{s}\right)^{1/2} \left(3 - \frac{s}{M_W^2} + \frac{s^2}{4M_W^4}\right) \le 1 \text{ for } V = W$$

$$\frac{1}{N} \left(\frac{\alpha a s}{16\cos^2\theta_W}\right)^2 \left(1 - \frac{4M_Z^2}{s}\right)^{1/2} \left(3 - \frac{s}{M_Z^2} + \frac{s^2}{4M_Z^4}\right) \le 1 \text{ for } V = Z$$

- Moreover: Acceptance of AFP serves as a natural cutof
- Limits do NOT differ by more then factor of 2 with or with

Improvments of the analysis

- Consider multiple proton proton colissions
- Aim at higher luminosities, and up to 46 interactions per bunch crossings
- Try to avoid missing energy
- I this possible? Yes, the crucial points are:
 - Timing detectors
 - Counting tracks in the inner detector

Suppression of pile-up

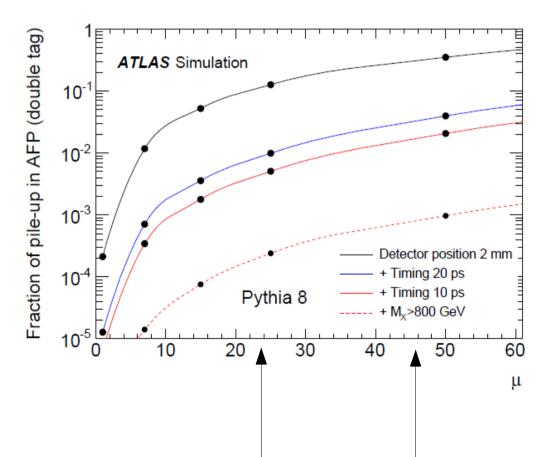
• Require difference between proton arrival times compatible with primary vertex

$$z_0 = \frac{c}{2}(t_1 - t_2)$$
 $\Delta t_{1,2} = 10 \text{ ps} \rightarrow \Delta z_0 = 2.1 \text{ mm}$

 Smearing both in time and position rejection at 1σ level (2.1mm)

Summary:

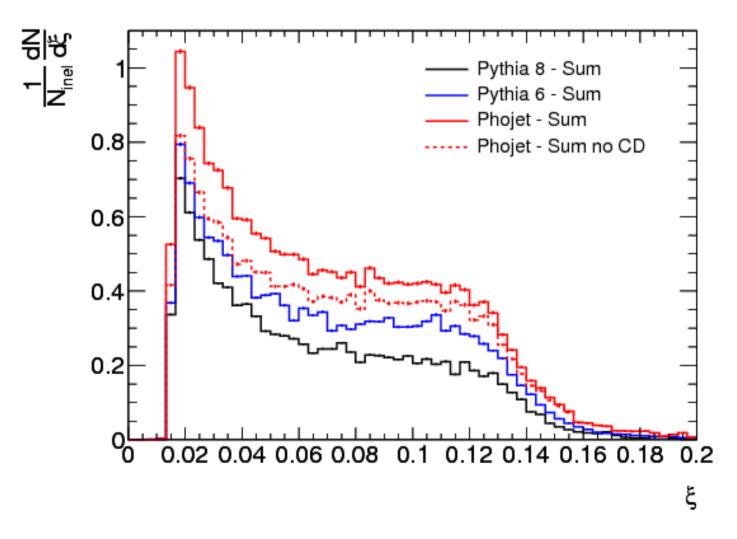
• Acceptance


$$\mu = 23$$
: 10⁻¹ $\mu = 46$: 3x10⁻¹

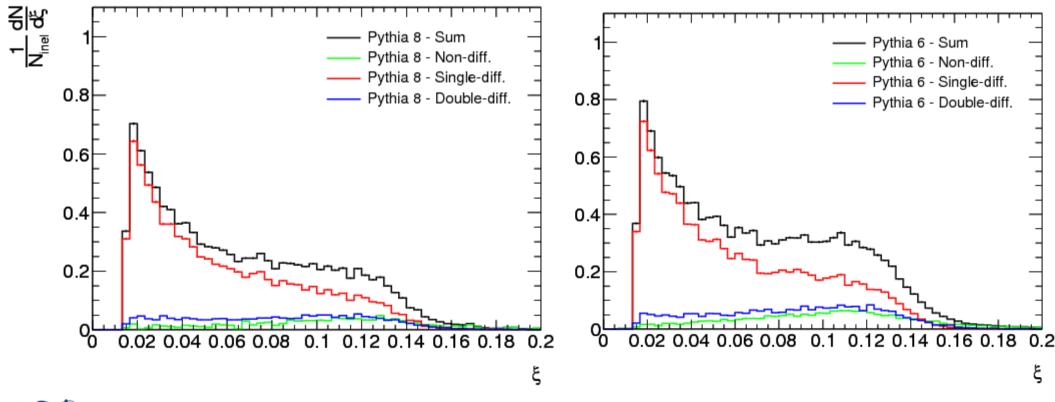
• +10ps timing

$$\mu = 23$$
: $4x10^{-3}$ $\mu = 46$: $2x10^{-2}$

• +High mass W>800GeV

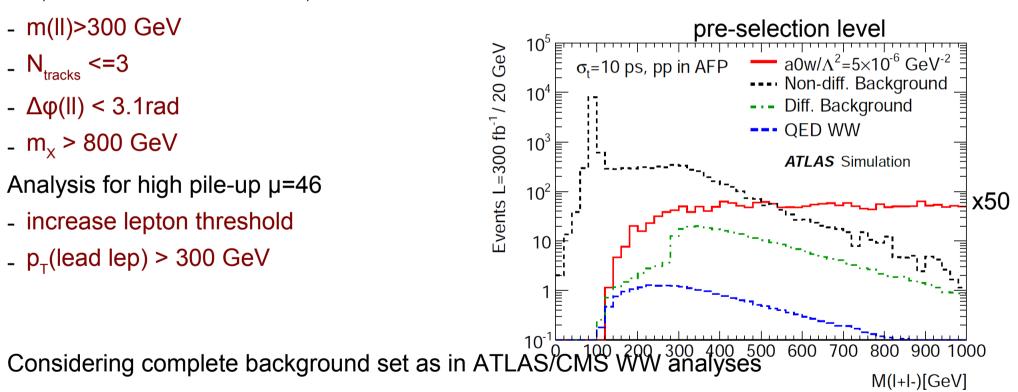

 $\mu = 23$: 2x10⁻⁴ $\mu = 46$: 10⁻³

Modeling of pile-up


- Differences between models yield uncertainty in the modeling of pile-up rates in AFP
- Largest deviation for Phojet by factor of 2

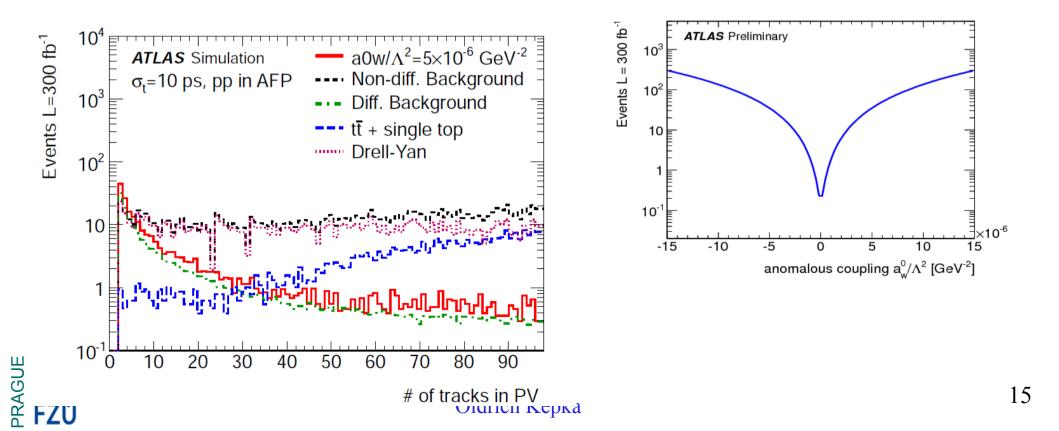
Pythia 6 / 8

- Differences in the modelling of large xi region uncertainty ~ 50%
- Significant contribution of the non-diffractive and double diffractive events
- Forward physics community should aim at constraining the prediction (ALFA/TOTEM)



Oldrich Kepka

Event selection


- Protons tracked through magnetic field of LHC, detector position at 206, 214m @ 1.5 mm from the beam (FPTracker), AFP approximate acceptance $0.02 < \xi < 0.14$
- Analysis for medium pile-up µ=23
 - $_{-}$ p_T(lead lep) > 150 GeV p_T(sub-lead lep) > 20GeV
 - m(II)>300 GeV
 - $-N_{\text{tracks}} \leq 3$
 - $\Delta \varphi(II) < 3.1 rad$
 - m_x > 800 GeV
- Analysis for high pile-up µ=46
 - increase lepton threshold
 - $_{-}$ p_{τ}(lead lep) > 300 GeV

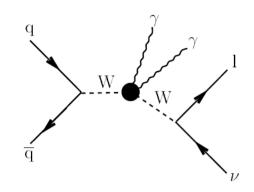
Event selection

- Exclusivity cut number of tracks >= 3 (p_{τ} > 500MeV)
 - Main improvement wrt. hadron level studies, which couldn't use tracks without a realistic simulation of tracker and pile-up
- Non-diffractive productions has larger tails
 - Tracker and vertexing performs extremely well in pile-up
- Fully simulated samples for 4 couplings, dependence fitted with a formula including polynomial and exponential distribution

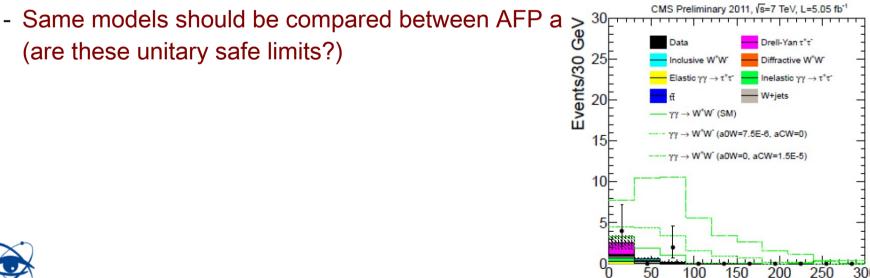
Final limits

- Fully simulated samples for 4 couplings, dependence fitted with a formula including polynomial and exponential distribution
- Background of the order of ~0.5 events in both μ =23 and 46 scenarios

	Cuts	Тор	Dibosons	Drell-Yan	W/Z+jet	Diffr.	$a_0^W/\Lambda^2 = 5 \cdot 10^{-6} \text{ GeV}^{-2}$
	$\begin{array}{l} \mbox{timing} < 10 \mbox{ ps} \\ p_T^{lep1} > 150 \mbox{ GeV} \\ p_T^{lep2} > 20 \mbox{ GeV} \end{array}$	5198	601	20093	1820	190	282
	M(11)>300 GeV	1650	176	2512	7.7	176	248
	nTracks ≤ 3	2.8	2.1	78	0	51	71
	$\Delta \phi < 3.1$	2.5	1.7	29	0	2.5	56
	$m_X > 800 \text{ GeV}$	0.6	0.4	7.3	0	1.1	50
• Final obtained limit	$p_T^{lep1} > 300 \text{ GeV}$	0	0.2	0	0	0.2	35


	a_0^W/Λ^2 Sensitivity		
U	5σ	95% C.L.	
$\mathcal{L} = 40 f b^{-1}, \mu = 23$	5.5 10 ⁻⁶	$2.4 \ 10^{-6}$	
$\mathcal{L}=300\ fb^{-1}, \mu=46$	3.2 10 ⁻⁶	1.3 10 ⁻⁶	

- Precision of ~10⁻⁶ GeV⁻⁻ where the βSivi effect could show-up maintained
- Mainly due to exclusivity requirement

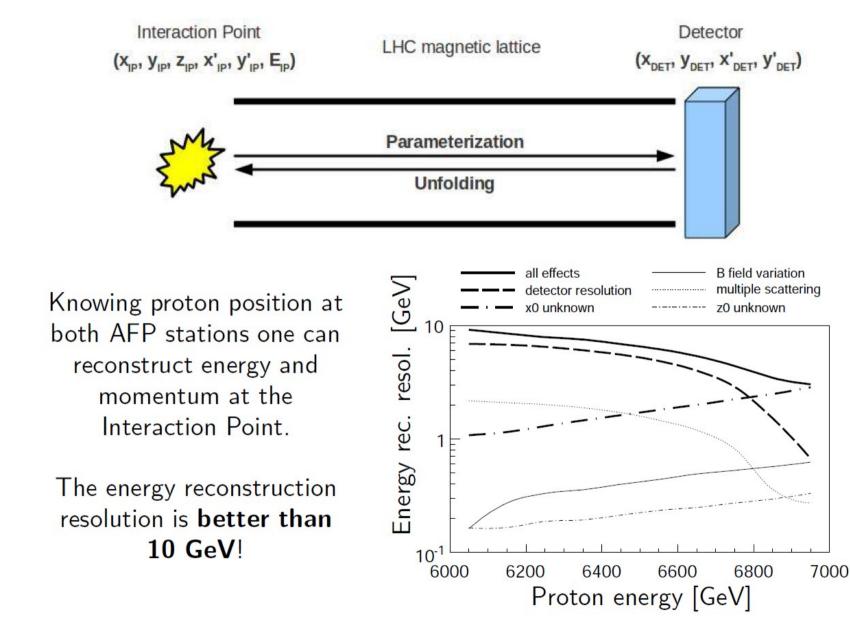


Comparison with existing methods

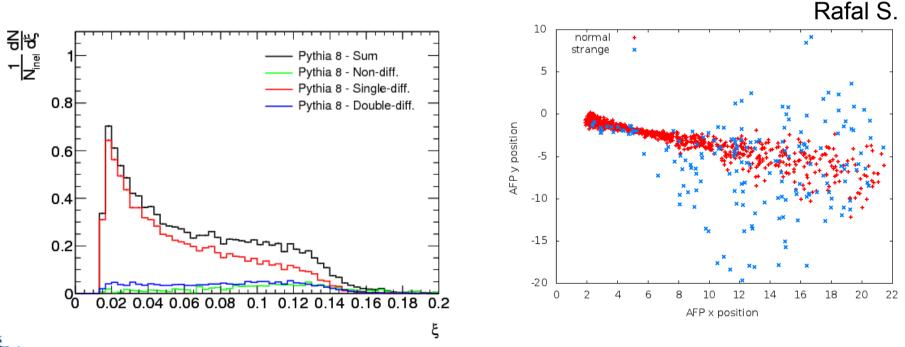
- Wyy binned maximum likelihod fit of Myy distribution
 - Unitary safe limits improve lep results by two orders of magnitude
 - AFP adds 1-2 orders better sensitivity

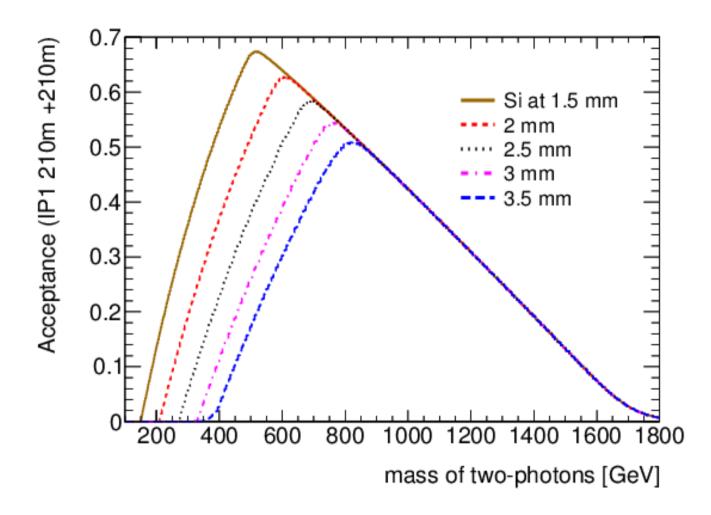
- New CMS preliminary result
 - Exclusive production without tagging, results very promissing, sensitivity to be determined ...

Summary


- Feasibility study of search for high mass object decaying into leptons in exclusive events using detector stations at 210m from IP
- By 1-2 orders of magnitude better sensitivity than the conventional method
 - Analysis of W expects sensitivity ~10⁻⁴ only
 - Competition sensitivity on exclusive WW with 8TeV data to be seen
- Anomalous γγZZ not mentioned, but experimentally simpler then WW employ correlation of Mx in forward detectors and 4 leptons
- With 420m one could measure DPE/yy packgrounds directly
 - However, for sensitivity to aQGC not crucial
- More studies to be done:
 - Exclusive production of di-photons as a probe of anomalous coupling
 - Investigation of semi-leptonic decays of WW to improve limits

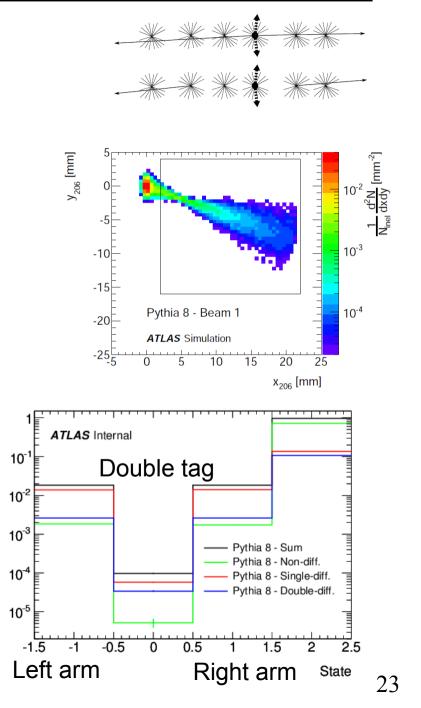
Backup


Proton kinematic reconstruction



Momentum fraction loss profiles

- Intact protons in non-diffractive and double-diffractive sample make about 50% of intact protons hitting AFP
- Right: single diffractive events
 - Comparing side with forward proton and the side with dissociated system
 - Rejection power could be increased by cutting on particular XxY patterens
- Needs to be measured!
 - Starting ALFA diffractive program can provide important constraints to pile-up in AFP



Multiple p-p collisions (Pile-up)

- Non-diffractive event in coincidence with two SD protons from MB events fake signal
- MB interaction hits one detector in 2% cases
- Fake double tag in 0.01% cases
- ND/DD events (and SD on the side of broken proton) also show intact protons especially at high ξ
- Pythia 6 predicts by about factor 10 higher rates than Pythia8
- Starting ALFA diffractive program can provide important constraints to pile-up in AFP

raction of Events

Study with Full Simulation

Signal:

- QED WW SM, with QGC, semi-leptonic decays

Backgrounds

- non-diffractive (+pile-up)
 - WW, WZ, ZZ, Drell-Yan, W/Z+jet, ttbar, single top
- diffractive
 - QED II, SD WW, DPE WW, DPE II
- Neglecting: Photon+Pomeron exchanges
- Generators: FPMC, Herwig++, Pythia8
- Fully simulated samples in Athena rel. 16
 µ=23, 46 corresponding to 40 and 300 fb⁻¹

