The Higgs Cross Section with a Jet Veto

Jonathan Walsh, UC Berkeley

work with: Frank Tackmann and Saba Zuberi - 1206.4312 Iain Stewart, Frank Tackmann, and Saba Zuberi - ongoing

1

H + 0-jet Calculation Preliminary Numerics and Uncertainties

Higgs Analysis: WW* Channel and Jet Binning

jet binning useful in separating backgrounds, maximizing sensitivity

from ATLAS, 1206.0756

Higgs Analysis: WW* Channel and Jet Binning

"The systematic uncertainties that have the largest impact on the sensitivity of the search are the theoretical uncertainties associated with the signal."

from ATLAS, 1206.0756

Higgs Analysis: WW* Channel and Jet Binning

"The systematic uncertainties that have the largest impact on the sensitivity of the search are the theoretical uncertainties associated with the signal."

from ATLAS, 1206.0756

Source (0-jet)	Signal (%)	Bkg. (%)
Inclusive ggF signal ren./fact. scale	13	-
1-jet incl. ggF signal ren./fact. scale	10) -
PDF model (signal only)	8	-
QCD scale (acceptance)	4	-
Jet energy scale and resolution	4	2
W+jets fake factor	-	5
WW theoretical model	-	5
Source (1-jet)	Signal (%)	Bkg. (%)
1-jet incl. ggF signal ren./fact. scale	26	-
2-jet incl. ggF signal ren./fact. scale	15) -
Parton shower/ U.E. model (signal only)	10	-
b-tagging efficiency	-	11
PDF model (signal only)	7	-
QCD scale (acceptance)	4	2
Jet energy scale and resolution	1	3
W+jets fake factor	-	5
WW theoretical model	-	3

Leading systematic uncertainties

dominant contribution:

perturbative QCD scale uncertainties

$$\delta \sigma_{0 \, \text{jet}} = 16.5\%$$

$$\delta \sigma_{1\,\text{jet}} = 30\%$$

ATLAS-CONF-2012-158

H + 0-jet Calculation Preliminary Numerics and Uncertainties

پ ₅ Jęt Binning

- Build•jets with a jet algorithm (e.g. anti-k_T)
- Experimental analysis often look at exclusive/inclusive jet bins
 - Standard veto is the jet p_T
 - e.g. 0 jets with p_T > 25 GeV, or at least 1 jet with p_T > 40 GeV
- Soft jets are poorly resolved, must be measured inclusively
- Low jet veto is useful in separating backgrounds (e.g. WW, tt~)

Approaches to Jet Vetoes

experiments veto on the p_T of each jet

depends on

jet algorithm

the event E_T is an effective veto against high p_T jets

doesn't

$$E_T = \sum_i p_{Ti}$$

We will bootstrap from the *well understood* global veto (E_T) to the *more complicated* jet veto

Types of Jet Vetoes

- Many types of vetoes to restrict jet activity have been studied, *e.g.*
 - q_T, beam thrust (*global* jet vetoes, can be calculated to high accuracy)
- Experiments often use jet p_T as a veto. Recent theory work:
 - H + 0-jets:
 - Banfi, Salam, Zanderighi (1203.5773) NLL+NNLO
 - Becher, Neubert (1205.3806) NNLL+NNLO (numerics being revised)
 - Banfi, Monni, Salam, Zanderighi (1206.4998) NNLL+NNLO
 - Stewart, Tackmann, JW, Zuberi (in progress) NNLL'+NNLO
 - H + 1-jet: Liu, Petriello (1210.1096, 1303.4405) NLL+NLO
- High luminosity LHC will give large pileup effects, may lead to some new and creative jet vetoes (e.g. using jet substructure)

H + 0-jet Calculation Preliminary Numerics and Uncertainties

Log Structure of H + 0-jet Cross Section

Counting in the log of the cross section

$\mathbf{L}\mathbf{L}$	NLL	NLL' NNLL	NNLL' NNNLL	T	p_T^{cut}
$\alpha_s L^2$	$\alpha_s L$	$lpha_{s}$		L = L	$\ln \frac{m_H}{m_H}$
$\alpha_s^2 L^3$	$\alpha_s^2 L^2$	$\alpha_s^2 L$	$lpha_s^2$		
$\alpha_s^3 L^4$	$\alpha_s^3 L^3$	$\alpha_s^3 L^2$	$\alpha_s^3 L$	$lpha_s^3$	

Global veto log structure

Log Structure of H + 0-jet Cross Section

Counting in the log of the cross section

NLL' NNLL' LL NLL NNLL NNNLL $L = \ln \frac{p_T^{\text{cut}}}{T}$ m_H $\alpha_s L^2$ $\alpha_s L$ α_s $L_R = \ln R$ $\alpha_s^2 L^2 \qquad \alpha_s^2 L$ $\alpha_s^2 L^3$ α_s^2 $\alpha_s^2 L L_R = \alpha_s^2 L, \alpha_s^2 L_R$ We work to $\alpha_s^3 L^3 \qquad \alpha_s^3 L^2 \qquad \alpha_s^3 L$ NNLL'+NNLO α_s^3 $\alpha_s^3 L^4$ $\alpha_s^3 L L_R^2 \quad \alpha_s^3 L L_R, \alpha_s^3 L_R^2 \quad \alpha_s^3 L, \alpha_s^3 L_R$ in the veto logs

Global veto log structure

Clustering corrections for the jet veto

has the RGE

boundary

conditions for

NNNLL+NNLO

Overview of the H + 0-jet Calculation

$$\sigma_0(p_T^{\text{cut}}) = \sigma_0^{\text{resum}}(p_T^{\text{cut}}) + \sigma_0^{\text{nons}}(p_T^{\text{cut}})$$

Resum to NNLL'

match to NNLO

New two-loop calculations, anomalous dimensions

MCFM H+jet at LO, NLO HNNLO for the total cross section

Campbell, Catani, Ellis, Williams Grazzini

Use the global, *jet algorithm independent* E_T veto to derive the double logarithmic resummation (+single logs)

Derive a *jet algorithm dependent* clustering correction that affects the single log resummation

Power Counting for H + 0-jet Cross Section

soft and collinear radiation emitted with a scale $p_T \sim p_T^{\rm cut}$

for a 0-jet cross section, there are no hard jet emissions this implies the final state can be described by SCET_{II}

Power Counting for H + 0-jet Cross Section

collinear radiation: $p_n \sim m_H(1, \lambda^2, \lambda)$ aligned with beam anti-collinear radiation: $p_{\bar{n}} \sim m_H(\lambda^2, 1, \lambda)$ aligned with (other) beam soft radiation: $p_s \sim m_H(\lambda, \lambda, \lambda)$ isotropic, goes anywhere

$$\lambda \sim \frac{p_T^{\rm cut}}{m_H} \ll 1$$

power counting parameter in SCET_{II}, enforces no high- p_T jets

$V_S(u, u_S;\mu)$ $\mu \sim M$ soft jet Rapidity Divergences ar $\nu_S \sim M$ $\nu \sim Q$ SCET_{II} modes and running eikonal matrix element: soft/collinear modes have $\int dp_T^2 \frac{dy}{\pi} \frac{d\phi}{\pi} \frac{1}{p_T^{2+2\epsilon}} \theta(p_T < p_T^{\text{cut}})$ same virtuality, k^+ different rapidities \bar{n} -col unregulated rapidity divergence we use the rapidity regulator to regulate rapidity divergences and resum logs functions like dim reg: soft $\mu \leftrightarrow \nu, \quad \epsilon \leftrightarrow \eta$ *n*-coll. renormalization, RG evolution performed like dim reg adds new scales to Chiu, Jain, Neill, Rothstein factorization theorem 1202.0814

Factorization Theorem for H + 0-jets in SCET

divide measurement function into global veto and clustering correction $\mathcal{M} = \theta(1 \text{ jet})\theta(p_T < p_T^{\text{cut}}) + \theta(2 \text{ jets})\theta(p_{T1} < p_T^{\text{cut}})\theta(p_{T2} < p_T^{\text{cut}}) + \dots$ $= \theta(p_T < p_T^{\text{cut}}) + \theta(2 \text{ jets}) \left[\theta(p_{T1} < p_T^{\text{cut}})\theta(p_{T2} < p_T^{\text{cut}}) - \theta(p_{T1} + p_{T2} < p_T^{\text{cut}})\right] + \dots$

Summary of Calculations

Global Veto Contribution

The global veto is interesting in its own right Only known to NLL+NLO, we calculate to NNLL'+NNLO

$$E_T = \sum_i p_{Ti}$$
 Higgs p_T is also a valid choice

renormalization scale

produces Sudakov double logs

rapidity scale

produces single logs

hard
(FO scale)
$$\mu_H = m_H$$
 beam $\mu_B = m_H$
beam, soft $\mu_B, \mu_S = p_T^{\text{cut}}$ soft $\nu_S = p_T^{\text{cut}}$

Clustering Effects (Relative to Global Veto)

NLO: only 1 parton, only 1 jet E_T is the same as the leading jet p_T *no clustering correction*

NNLO: E_T and leading jet p_T differ when two jets in final state *lowest order clustering correction*

NNNLO: jet algorithm dependent unknown contribution

Two Clustering Effects, Two Regions of Jet Radius

Jet algorithm effects: $\sigma \supset \mathcal{O}(\mathbb{R}^n), \ \mathcal{O}(\ln^n \mathbb{R}) \text{ terms}$ Can induce violations to Factorization theorem valid for small jet radius naive factorization Large jet radius Small jet radius R << 1 R ~ 1

complicates factorization but numerically less important logarithms of jet radius important but resummation is impossible

Clustering Logs

Clustering effects give rise to logs of R

E_T veto measurement at NNLO:

 $\mathcal{M} = \theta(p_{T1} + p_{T2} < p_T^{\mathrm{cut}})$

correction for clustering:

$$\Delta \mathcal{M} = \theta(\Delta R > R) \left[\theta(p_{T1} < p_T^{\text{cut}}) \, \theta(p_{T2} < p_T^{\text{cut}}) - \theta(p_{T1} + p_{T2} < p_T^{\text{cut}}) \right]$$

Clustering Logs in the Soft Function

can be calculated using collinear limits of eikonal matrix elements:

$$\Delta S^{(2)} = \left(\frac{\alpha_s C_A}{\pi}\right)^2 \ln \frac{\nu}{p_T^{\text{cut}}} \left(-4.97\right) \ln R$$
$$\Delta S^{(n)} = \left(\frac{\alpha_s C_A}{\pi}\right)^n \ln \frac{\nu}{p_T^{\text{cut}}} C_n^{(n-1)} \ln^{n-1} R$$

NLL if $\ln R \sim \ln \frac{m_H}{p_T^{\text{cut}}}$

resummation is unknown *impacts uncertainty estimates*!

Numerical Impact of Clustering Effects

Summary of Resummation

- Performed resummation to NNLL'
 - Global veto captures dominant veto logs
 - Clustering correction accounts for the jet algorithm effects, we understand the all-orders structure of these terms
 - Resummation of clustering effects unknown, potentially very important
- Only the 3-loop non-cusp (+4-loop cusp) anom. dim. unknown for NNNLL
 - Two parts: the global veto and the clustering contribution
 - Challenging to obtain, but the tools exist, and would help uncertainties
- Now let's match to NNLO and carry out numerics

Resummation vs. Fixed Order

Fixed Order Singular and Non-Singular Terms

Scales and Resummation

$$\sigma(p_T^{\text{cut}}) = H(m_H, \mu) \int dx_a \, dx_b \, B_a(p_T^{\text{cut}}, x_a, \mu, \nu) B_b(p_T^{\text{cut}}, x_b, \mu, \nu) S(p_T^{\text{cut}}, \mu, \nu)$$

Natural factorization scales:

Profile Scales

vary each beam, soft scale independently

constrain variations of scale ratios, e.g. $\mu_{\rm B}/\mu_{\rm S}$

26 variations

vary all scales collectively, preserve scale ratios

also vary low profile shape 4 different shapes

11 variations

exclusive jet bins have cancellations between large perturbative corrections and veto logs

$$C_{\rm FO}(\{\sigma_{\rm tot},\sigma_0,\sigma_{\geq 1}\}) = \begin{pmatrix} \Delta_{\rm tot}^2 & \Delta_{\rm tot}^2 & 0 \\ \Delta_{\rm tot}^2 & \Delta_{\rm tot}^2 + \Delta_{\geq 1}^2 & -\Delta_{\geq 1}^2 \\ 0 & -\Delta_{\geq 1}^2 & \Delta_{\geq 1}^2 \end{pmatrix}$$

fixed order 0-jet bin: treat total and 1-jet inclusive uncertainties as uncorrelated

> this general method currently used in many experimental analyses

Uncertainties: Resummation

With resummation, can separately estimate the fixed order and resummation uncertainties

$$C = C_{\text{resum}} + C_{\text{fixed}},$$

$$C_{\text{resum}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta_{\text{resum}}^2 & -\Delta_{\text{resum}}^2 \\ 0 & -\Delta_{\text{resum}}^2 & \Delta_{\text{resum}}^2 \end{pmatrix},$$

$$C_{\text{fixed}} = \begin{pmatrix} \Delta_{\text{tot}}^2 & \Delta_{\text{tot}}\Delta_{H0} & \Delta_{\text{tot}}\Delta_{H\geq 1} \\ \Delta_{\text{tot}}\Delta_{H0} & \Delta_{H0}^2 & \Delta_{H0}\Delta_{H\geq 1} \\ \Delta_{\text{tot}}\Delta_{H\geq 1} & \Delta_{H0}\Delta_{H\geq 1} & \Delta_{H0}^2 \\ \end{pmatrix} \stackrel{\sigma_{\text{tot}}}{\sigma_{\geq 1}}$$

$$\Delta_{\rm tot} = \Delta_{H0} + \Delta_{H\geq 1}$$

Full covariance matrix lets us determine any uncertainty and take correlations into account

H + 0-jet Cross Section

Results for $E_{cm} = 8$ TeV, $m_H = 125$ GeV, R = 0.4Observe a modest reduction in uncertainties with larger R $\Delta_0^2(p_T^{\text{cut}}) = \Delta_{\text{resum}}^2(p_T^{\text{cut}}) + \Delta_{H0}^2(p_T^{\text{cut}})$ resummed convergence comparison to FO $gg \to H (8 \,\mathrm{TeV})$ $gg \to H \ (8 \,\mathrm{TeV})$ $-m_{H} = 125 \, {
m GeV}$ $-m_H = 125 \,\mathrm{GeV}$ 20 20 R = 0.4R = 0.4 $\sigma_0(p_T^{ ext{cut}}) ~[ext{pb}] pb]$ $\sigma_0(p_T^{ ext{cut}}) \; [ext{pb}]$ $\text{NNLL}'_{p_T} + \text{NNLO}$ 5 $\mathrm{NLL}'_{p_T} + \mathrm{NLO}$ 5 \dots NLL_{n_T} **NNLO** 0 0 10 10 2030 50 70 80 2030 50 70 40 60 40 60 $p_T^{
m cut} ~[{
m GeV}]$ $p_T^{\rm cut} \,\, [{
m GeV}]$ we can estimate an additional uncertainty

from higher order clustering effects

H + 0-jet Cross Section: Uncertainties

Results for E_{cm} = 8 TeV, m_H = 125 GeV, R = 0.4 Observe a modest reduction in uncertainties with larger R

 $\Delta_0^2(p_T^{\text{cut}}) = \Delta_{\text{resum}}^2(p_T^{\text{cut}}) + \Delta_{H0}^2(p_T^{\text{cut}})$

resummed convergence

comparison to FO

fractional uncertainty hard work pays off!

H + 1-jet Inclusive Cross Section

$$\sigma_{\geq 1}(p_T^{\text{cut}}) = \sigma_{\text{tot}}^{\text{FO}} - \sigma_0(p_T^{\text{cut}})$$
$$\Delta_{\geq 1}(p_T^{\text{cut}}) = \Delta_{\text{resum}}^2(p_T^{\text{cut}}) + \Delta_{H>1}^2(p_T^{\text{cut}})$$

resummed convergence

comparison to FO

would be interesting to compare to H+1-jet NNLO predictions test perturbative corrections vs. logs

H + 0-jet Efficiency

correlations between fixed order scale variation in 0-jet, total cross sections reduces uncertainties

Conclusions

- H + 0-jet cross section is a key theoretical input to Higgs studies
 - Resummation substantially improves uncertainty
 - Comparison to Banfi, Monni, Salam, Zanderighi and Becher, Neubert, Rothen will be insightful
- Many new results
 - E_T resummation to NNLL'+NNLO (extends NLL+NLO)
 - First 2-loop calculation with rapidity (eta) regulator by Chiu et. al.
 - Analytic determination of dominant constant terms
 - All-orders understanding of clustering effects
- Many avenues to further improve uncertainty

Extra Slides

H + 0-jet Cross Section: Uncertainties

$$\Delta_0^2(p_T^{\text{cut}}) = \Delta_{\text{resum}}^2(p_T^{\text{cut}}) + \Delta_{H0}^2(p_T^{\text{cut}})$$

transition region [20,40] GeV: both uncertainties very important!