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Theoretical Predictions in the LHC Era

I A lot of progress has been achieved towards the goal of
describing hadron collider processes consistently at NLO

I Calculations beyond NLO are also progressing well, but
automation is difficult, and analytic methods to calculate e.g.
two-loop integrals involving massive particles reach their limit

I Numerical methods are in general easier to automate,
problems mainly are

I Extraction of IR and UV singularities
I Numerical convergence in the presence of integrable

singularities (e.g. thresholds)
I Speed/accuracy
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Theoretical Predictions in the LHC Era

I A lot of progress has been achieved towards the goal of
describing hadron collider processes consistently at NLO

I Calculations beyond NLO are also progressing well, but
automation is difficult, and analytic methods to calculate e.g.
two-loop integrals involving massive particles reach their limit

I Numerical methods are in general easier to automate,
problems mainly are

I Extraction of IR and UV singularities (solved with SecDec 1.0)
I Numerical convergence in the presence of integrable

singularities (e.g. thresholds) (solved with SecDec 2.0)
I Speed/accuracy (improved with SecDec 2.1)
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Public codes using the sector decomposition method

Idea and method of sector decomposition introduced by Hepp ’66,

Denner & Roth ’96, Binoth & Heinrich ’00

Public codes:

I sector decomposition (uses GiNaC) C. Bogner & S. Weinzierl ’07

supplemented with CSectors Gluza, Kajda, Riemann, Yundin ’10

for construction of integrand in terms of Feynman parameters

I FIESTA (uses Mathematica, C) A.V. Smirnov, V.A. Smirnov, M.

Tentyukov ’08 ’09

I SecDec (uses Mathematica, Fortran/C++) J. Carter &

G. Heinrich ’10; SB, J. Carter, G. Heinrich ’12; SB & G. Heinrich ’13

Many people are/have been working on purely numerical
methods, e.g. Anastasiou et al., Becker/Reuschle/Weinzierl et al.,

Binoth/Heinrich et al., Boughezal/Melnikov/Petriello et al., Czakon/Mitov et al.,

Freitas et al., Kurihara et al., Nagy/Soper et al., Passarino et al., ...
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SecDec 2.1 can tackle ...

SecDec is a tool to numerically compute various sorts of integrals
contributing to higher-order computations.

It can tackle:

I General Feynman integrals and more general parametric
functions for arbitrary kinematics

orgraph
Feynman

function
parametric
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General Feynman Integral

I Generic Feynman integrals in D dimensions at L loops with
N propagators to power νj of rank R with Nν =

∑N
j=1 νj , e.g.

scalar multi-loop integral in Feynman parametrization

G =
(−1)Nν

∏N
j=1 Γ(νj)

Γ(Nν − LD/2)

∞∫

0

N∏

j=1

dxj x
νj−1
j δ(1−

N∑

l=1

xl)
UNν−(L+1)D/2(~x)

FNν−LD/2(~x)

I Extension to physical kinematics including mass thresholds
since SecDec 2.0: Limitation of multi-scale integrals to the
Euclidean region lifted! SB, Carter, Heinrich ’12

NEW in SecDec 2.1

I Computation of contracted tensor integrals at in principle
arbitrary rank possible SB & Heinrich ’13

IRank3 =

∫∫
dDk1 d

Dk2
p1µk

µ
1 k1νk

ν
2

D1D2D3D4D5
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Parametric Functions

A general parametric function can be

I a phase space integral where IR divergences are regulated
dimensionally

I functions similar to hypergeometric functions, e.g.

3F2(a1,..., a3; b1, b2;β) ∝
∫∫ 1

0
dxdy xa1−1(1− x)b1−a1−1ya2−1(1− y)b2−a2−1(1− βxy)−a3

NEW in SecDec 2.1

I Computation of more general user-defined polynomial
integrals matching the Feynman loop integral structure SB &

Heinrich ’12 ’13
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Operational Sequence of the SecDec 2.1 Program

graph info Feynman integral
iterated sector
decomposition

contour
deformation

subtraction
of poles

expansion
in ǫ

numerical
integration

result
n∑

Cmǫ
m

1a 2
3

456

7 8

multiscale?
yesno

m=−2L

user−defined
function

1b

Numerical integration:
Cuba library Hahn et al. ’04 ’11 or Bases Kawabata ’95
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New features of the program SecDec Version 2.1

I Computation of contracted tensor integrals at in principle
arbitrary rank possible

I User-defined functions amenable to contour deformation can
be inserted and decomposed directly

I User-friendliness and efficiency improved (e.g. convergence
behavior written to result files)
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Example I: 2-loop bubble with 2 mass scales

m1 m2

m1 m2

p p

I Scalar:

IScalar =

∫∫
dDk1 d

Dk2
1

D1D2D3D4D5

I Rank 3:

IRank3 =

∫∫
dDk1 d

Dk2
p1µk

µ
1 k1νk

ν
2

D1D2D3D4D5

Di = (ki + pi )
2 −m2

i + iδ, sij = (pi + pj)
2

ki - loop momenta, pi - external momenta

analytical result for scalar 2L Bubble by Bauberger & Böhm ’94
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2-loop bubble with 2 mass scales - Results

thresholds at 4 ·m2
1 = 8 and 4 ·m2

2 = 16
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2-loop bubble with 2 mass scales - Timings
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I relative & absolute accuracy 0.1%

I Scalar integral is finite, rank 3 integral has O(ε−2) poles

I Intel Core i7 Processor
m1 m2

m1 m2

p p
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Example II:
Massive non-planar 2-loop diagrams for tt̄@NNLO

m1

m2

p2p1

p4

p3

(a) ggtt1

m1p2p1

p4

p3

(b) ggtt2

I Diagram ggtt1 entering heavy fermionic corrections:
finite, no analytical results available
→ easily computable with SecDec

I Diagram ggtt2 entering light fermionic corrections:
leading pole O(ε−4), spurious divergence, analytic result by
Manteuffel & Studerus ’12

→ many functions to integrate, cancellations
⇒ analytic preparation
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Analytical manipulations beforehand

Goals for better numerical convergence:

1) decrease number of numerical integration parameters

2) turn linear divergences x−2−ε into logarithmic ones

3) decrease number of functions

Achieving goal 1: Integrate out one loop first

m1p2p1

p4

p3

m1

p2

p1 p4

p3

→ with clever transformations analytical integration of one
Feynman parameter is possible
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Convert linear divergences into logarithmic ones

Achieving goal 2: Distribute divergences more evenly among
Feynman parameters by rearranging them.
How can this be put into practice?
Idea: SB & Heinrich ’13

1) blow down set of Feynman parameters

2) apply method of sector decomposition backwards

Reminder: the method of sector decomposition:∫ 1

0
dx1

∫ 1

0
dx2

1

(x1 + x2)2+ε
(θ(x1 − x2) + θ(x2 − x1))

=

∫ 1

0
dx1

∫ x1

0
dx2

1

(x1 + x2)2+ε
+

∫ 1

0
dx2

∫ x2

0
dx1

1

(x1 + x2)2+ε

=

∫ 1

0
dx1

∫ 1

0
dt

x1

(x1 + x1t)2+ε
+

∫ 1

0
dx2

∫ 1

0
dt̃

1

x1+ε
2 (t̃ + 1)2+ε
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Convert linear divergences into logarithmic ones

Achieving goal 2: Distribute divergences more evenly among
Feynman parameters by rearranging them.
How can this be put into practice?
Idea: SB & Heinrich ’13

1) blow down set of Feynman parameters
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0
dx1

∫ 1

0
dx2

1

(x1 + x2)2+ε
(θ(x1 − x2) + θ(x2 − x1))

=

∫ 1

0
dx1

∫ x1

0
dx2

1

(x1 + x2)2+ε
+

∫ 1

0
dx2

∫ x2

0
dx1

1

(x1 + x2)2+ε

=

∫ 1

0
dx1

∫ 1

0
dt

x1

(x1 + x1t)2+ε
+

∫ 1

0
dx2

∫ 1

0
dt̃

1

x1+ε
2 (t̃ + 1)2+ε

(1)
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Convert linear divergences into logarithmic ones

Achieving goal 2: Distribute divergences more evenly among
Feynman parameters by rearranging them.
How can this be put into practice?
Idea: SB & Heinrich ’13

1) blow down set of Feynman parameters

2) apply method of sector decomposition backwards

Sector decomposition backwards to find expression for Eq. (1):

∫ 1

0
dx1

∫ 1

0
dx2

θ(x1 − x2) + θ(x2 − x1)

(x1 + x2)2+ε
−
∫ 1

0
dx2

∫ x2

0
dx1

1

(x1 + x2)2+ε

=

∫ 1

0
dx1

∫ x1

0
dx2

1

(x1 + x2)2+ε
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Convert linear divergences into logarithmic ones II
~xjk denotes all Feynman parameters excluding xj and xk

Assume α > 1 and functions P, Q, R such that a linear divergence
appears in xj in Eq. (2) after sector decomposition

N∏

i=1

{∫ 1

0
dxi

}
[xj(P(~xjk) + xkQ(~xjk)) + R(~xjk)]−α (2)

=
N∏

i=1

{∫ 1

0
dxi

}
1

xj
[xjP(~xjk) + xkQ(~xjk) + R(~xjk)]−α

−
N∏

i=1

{∫ 1

0
dxi

}
1

xj
[xk(xjP(~xjk) + Q(~xjk)) + R(~xjk)]−α

We rest with a logarithmic divergence in xj .
I Linear divergences can be turned into logarithmic ones
I In the case of ggtt2 this leads to a total reduction of number

of functions by 2/3 (goal 3 achieved)
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Result for the non-planar massive two loop diagram
ggtt2
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analytic results: Manteuffel & Studerus ’12
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Result for the non-planar massive two loop diagram
ggtt2
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Results for the non-planar massive two loop diagram
ggtt1
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Install SecDec 2.1

I Download:
http://secdec.hepforge.org

I Install:
tar xzvf SecDec.tar.gz
cd SecDec-2.1
./install

I Prerequisites:
Mathematica (version 6 or above), Perl, Fortran and/or C++
compiler
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Summary & Outlook

Summary

I SecDec 2.1 is a useful tool to compute various sorts of
integrals: general loop integrals, contracted tensor integrals
and user-defined polynomial integrals

I We computed non-planar 2-loop 4-point master integrals
entering tt̄@NNLO computations

I We found a new transformation which allows for the reduction
of divergences and the number of functions to integrate

Outlook

I Phenomenological application to two-loop problems

I Combination with new unitarity inspired reduction of 2-loop
amplitudes
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Backup
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User Input I

I param.input: parameters for integrand specification and
numerical integration
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User Input II
I template.m: definition of the integrand

(Mathematica syntax)

p3

p1

p2

1

2

3

4

5
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Program Test Run

I ./launch -p param.input -t template.m
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Get the Result

I resultfile P126 full.res
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Deformation of the integration contour to integrate
mass thresholds

Re(z)

Im(z)

10

I Integrand is analytically continued into the complex plane

F(~t)→ F(~t + i~y(~t)) = F(~t) + i
∑

j

yj(~t)
∂F(~t)

∂tj
+O(y(~t)2)

I The integration contour is deformed by

~t → ~z = ~t + i~y ,

yj(~t)= −λtj(1− tj)
∂F(~t)

∂tj
Soper ’99

Soper, Nagy, Binoth; Kurihara et al., Anastasiou et al., Freitas et al., Becker et al.
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