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e
Theoretical Predictions in the LHC Era

> A lot of progress has been achieved towards the goal of
describing hadron collider processes consistently at NLO

» Calculations beyond NLO are also progressing well, but
automation is difficult, and analytic methods to calculate e.g.
two-loop integrals involving massive particles reach their limit

» Numerical methods are in general easier to automate,
problems mainly are

» Extraction of IR and UV singularities (solved with SecDec 1.0)

» Numerical convergence in the presence of integrable
singularities (e.g. thresholds) (solved with SecDec 2.0)

» Speed/accuracy (improved with SecDec 2.1)



Public codes using the sector decomposition method

Idea and method of sector decomposition introduced by Hepp '66,
Denner & Roth '96, Binoth & Heinrich '00

Public codes:

> sector_decomposition (uses GiNaC) C. Bogner & S. Weinzierl '07
supplemented with CSectors Gluza, Kajda, Riemann, Yundin '10

for construction of integrand in terms of Feynman parameters

» FIESTA (USGS Mathematica, C) A.V. Smirnov, V.A. Smirnov, M.
Tentyukov '08 '09

» SecDec (uses Mathematica, Fortran/C++) J. Carter &
G. Heinrich '10; SB, J. Carter, G. Heinrich '12; SB & G. Heinrich '13

Many people are/have been working on PURELY numerical
methods, €.g. Anastasiou et al., Becker/Reuschle/Weinzierl et al.,
Binoth/Heinrich et al., Boughezal/Melnikov/Petriello et al., Czakon/Mitov et al.,

Freitas et al., Kurihara et al., Nagy/Soper et al., Passarino et al., ...



SecDec 2.1 can tackle ...

SecDec is a tool to numerically compute various sorts of integrals
contributing to higher-order computations.

It can tackle:

» General Feynman integrals and more general parametric
functions for arbitrary kinematics

Feynman or parametric
graph function
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General Feynman Integral

» Generic Feynman integrals in D dimensions at L loops with
N propagators to power v; of rank R with N, = Zszl vj, e.g.
scalar multi-loop integral in Feynman parametrization

N N, L+1)D/2( %)

( ) vi— _ X
H r(N, — LD/2) /de, 3(1 Z, PN ID73(R)

(J) 0 J=1

» Extension to physical kinematics including mass thresholds
since SecDec 2.0: Limitation of multi-scale integrals to the
Euclidean region lifted! sB, Carter, Heinrich '12

NEW in SecDec 2.1

» Computation of contracted tensor integrals at in principle
arbitrary rank possible SB & Heinrich '13

kP ke, kY
TRank3 = dPk: Pk, PLefi ko
Ranks // Y "2 DI DyD3 D, Ds



Parametric Functions

A general parametric function can be

> a phase space integral where IR divergences are regulated
dimensionally

» functions similar to hypergeometric functions, e.g.
3F2(31,..., ds,; b17 b21 ﬁ) X
1
[ axdy ot sgpartym i i gy
0

NEW in SecDec 2.1

» Computation of more general user-defined polynomial
integrals matching the Feynman loop integral structure sB &
Heinrich '12 '13



Operational Sequence of the SecDec 2.1 Program

1 i
| & graph info }—»—{2 Feynman integral |—>—

Numerical integration:

3
iterated sector
LD user — defined decomposition
function
multiscale?
no ves
6 # 5 # 4 #
expansion subtraction contour
ine of poles deformation
7 8
numerical rrfesult
integration > Cpe™
m=-2L

CuBA Iibrary Hahn et al. '04 '11 or BASES Kawabata '95
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New features of the program SecDec Version 2.1

» Computation of contracted tensor integrals at in principle
arbitrary rank possible

» User-defined functions amenable to contour deformation can
be inserted and decomposed directly

» User-friendliness and efficiency improved (e.g. convergence
behavior written to result files)



Example I: 2-loop bubble with 2 mass scales

p P
» Scalar:
Tscal ://deld%;
catat D1D;D3D4 D5
» Rank 3:
k! ky, kY
7 — de de le v
fanks = / / " ™ D1D,D3D, Ds
D; = (ki + pi)? — m} +16, sj = (pi + pj)?
k; - loop momenta, p;i - external momenta

analytical result for scalar 2L Bubble by Bauberger & Bshm '94



2-loop bubble with 2 mass scales - Results

thresholds at 4- m? = 8 and 4- m3 = 16 p

Scalar 2L bubble with m?=2.0, m3=4.0
0.5

"Real (SecDec) ——
Imag (SecDec) —+—
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-0.5 -

Real and imaginary finite part

T }J

Real and imaginary finite part

my ms

my ms

Rank 3 2L bubble with m?=2.0, m3=4.0

| Imag (SecDec) —+—

"Real (SecDec) ——

Scalar integral
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2-loop bubble with 2 mass scales - Timings

time in's

Timings tensor/scalar 2L bubble with m3=2.0, m3=4.0

" Scalar 2L Bubble  +
Rank 3 2L Bubble  +

time in s

Timings tensor/scalar 2L bubble with m3=2.0, m3=4.0

Scalar 2L Bubble +

6 Rank 32L Bubble  +
14
+
12 1
+
1r * +
+
++
08
" by - Fa +
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06 H+ N Tt EH F
+ 1 T
e T o
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02l F *H##; -
o ity
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» relative & absolute accuracy 0.1%

» Scalar integral is finite, rank 3 integral has O(e=2) poles

» Intel Core i7 Processor

p p




Example Il:
Massive non-planar 2-loop diagrams for tt@NNLO

P

P2 my

(a) gsttl

» Diagram ggttl entering heavy fermionic corrections:
finite, no analytical results available
— easily computable with SecDec
» Diagram ggtt2 entering light fermionic corrections:
leading pole O(e~*), spurious divergence, analytic result by

Manteuffel & Studerus '12

Pa

b1

P2

my

(b) ggtt2

— many functions to integrate, cancellations

= analytic preparation

2
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Analytical manipulations beforehand

Goals for better numerical convergence:

1) decrease number of numerical integration parameters

2) turn linear divergences x~27¢ into logarithmic ones

3) decrease number of functions

Achieving goal 1: Integrate out one loop first

Pa P1 yz3

P P2 m _> [ ] my

3 D2 Da

— with clever transformations analytical integration of one
Feynman parameter is possible



Convert linear divergences into logarithmic ones

Achieving goal 2: Distribute divergences more evenly among
Feynman parameters by rearranging them.
How can this be put into practice?

Idea: SB & Heinrich '13
1) blow down set of Feynman parameters

2) apply method of sector decomposition backwards

Reminder: the method of sector decomposition:

/dX1 dxo (X—i——lx)2+e( (x1 = x2) +0(x2 — x1))

d d d d
/ Xl/ e (x1 + x0)2+€ / X2/ Xl (x1 +X2 (x1 + x0)2+€
/dxl/dt (xt + x1t (x1 + xit)2+e /dx2/dt 1+€ T 1)t



Convert linear divergences into logarithmic ones

Achieving goal 2: Distribute divergences more evenly among
Feynman parameters by rearranging them.

How can this be put into practice?

Idea:

1) blow down set of Feynman parameters

SB & Heinrich '13

2) apply method of sector decomposition backwards

Reminder: the method of sector decomposition:

1 1 1
/dxl/dxz m(e(xl —x2) + 0(x2 — x1))
d d d
/dx1/ X2 (1 + %) 2+6 /X2/ X1 x1+><2 2+6
d dt ——— d dt 1
/Xl/ (x1 +X1t)2+6 /X2/ XATE(F 4 1)2+e t+1)2+( )



Convert linear divergences into logarithmic ones

Achieving goal 2: Distribute divergences more evenly among
Feynman parameters by rearranging them.

How can this be put into practice?

Idea:

1) blow down set of Feynman parameters

SB & Heinrich '13

2) apply method of sector decomposition backwards

Reminder: the method of sector decomposition:

1 1 1
/Xm/dxz m(%ﬁ —x2) + 0(x2 — x1))
d d d
/dX1/ & (x1 -I-Xz)2+€ / X2/ . (x1 +X2 2“
d dt —————— d dt
/ Xl/ (x1 + xﬂ-‘)2+E / Xz/ XA TE(F + 1)2+e



Convert linear divergences into logarithmic ones

Achieving goal 2: Distribute divergences more evenly among
Feynman parameters by rearranging them.
How can this be put into practice?

Idea: SB & Heinrich '13

1) blow down set of Feynman parameters

2) apply method of sector decomposition backwards

Sector decomposition backwards to find expression for Eq. (1):

1

Xm dX 9(X1 — X2) + 9 X2 — X1 1

d d —_—
(X1 + x)2+¢ / Lo Ga £ x0)2te

d d
/Xl/ e (x1 -I-X2)2+€




Convert linear divergences into logarithmic ones II
X« denotes all Feynman parameters excluding x; and x;

Assume « > 1 and functions P, Q, R such that a linear divergence
appears in x; in Eq. (2) after sector decomposition

N

11 {/01 dxi} [ (P(X) + QX)) + RG] (2)

i=1



Convert linear divergences into logarithmic ones II
X« denotes all Feynman parameters excluding x; and x;

Assume « > 1 and functions P, Q, R such that a linear divergence
appears in x; in Eq. (2) after sector decomposition

N

H{AiM}WW®U+&M@D+R®M** ()

i=1

- PP (Ri) + 2 Q(X) + R(x )] ™
J

[k P () + Q%)) + R(Gu)] ™



Convert linear divergences into logarithmic ones II
X« denotes all Feynman parameters excluding x; and x;

Assume « > 1 and functions P, Q, R such that a linear divergence
appears in x; in Eq. (2) after sector decomposition

N

11 {/01 dxi} [ (P(X) + QX)) + RG] (2)

i=1

- f[l {/01 dxi} %[XJP(%‘/() + 3. Q(X) + R(xjk )]~

- H { [ b s bp50 + 050 + Res01

We rest W|th a logarithmic divergence in x;.
> Linear divergences can be turned into logarithmic ones
> In the case of ggtt2 this leads to a total reduction of number
of functions by 2/3 (goal 3 achieved)



Result for the non-planar massive two loop diagram
ggtt2
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analytic results: Manteuffel & Studerus '12



Result for the non-planar massive two loop diagram
ggtt2
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Finite part of non-planar 2L box diagram ggtt2
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Results for the non-planar massive two loop diagram

ggttl

Non-planar scalar massive 2L box diagram ggtt1

Non-planar rank 2 massive 2L box diagram ggtt1
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e
Install SecDec 2.1

» Download:
http://secdec.hepforge.org

> Install:
tar xzvf SecDec.tar.gz
cd SecDec-2.1
./install

» Prerequisites:
Mathematica (version 6 or above), Perl, Fortran and/or C++
compiler



T
Summary & Outlook

Summary

» SecDec 2.1 is a useful tool to compute various sorts of
integrals: general loop integrals, contracted tensor integrals
and user-defined polynomial integrals

» We computed non-planar 2-loop 4-point master integrals
entering ttONNLO computations

» We found a new transformation which allows for the reduction
of divergences and the number of functions to integrate

Outlook
» Phenomenological application to two-loop problems

» Combination with new unitarity inspired reduction of 2-loop
amplitudes



Backup
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User Input |

> param.input: parameters for integrand specification and
numerical integration

REEEEpEEEAARRRE Input parameters for sector decomposition ###ssdsssssises

# subdirectory for the mathematica output files (will be created if non-existent) :

# if not specified, a directory with the name of the graph given below will be created by default
subdir=21loop

# if outputdir is not specified: default directory for

# the output will have integral name (given below) appended to directory above,

# otherwise specify full path for Mathematica output files here

outputdir=

# graphname (can contain underscores, numbers, but should not contain commas)

graph=P126

Bo oo m e m ..
# number of propagators:

propagators=6

Bm s m o il
# number of external legs:

legs=3

# number of loops:
loops=2

# construct integrand (F and U) via topological cuts (only possible for scalar integrals)
# default is @ (no cut construction used)
cutconstruct=1

# parameters for subtractions and epsilon expansion




User Input I R

|

» template.m: definition of the integrand " !
|

|

(Mathematica syntax)

(#*#*+2+ USER INPUT for construction of integrand }

(**##+2% Use with cutconstruct=1 )

proplist={{ms[1],{3,4}},{ms[1],{4,5}},{ms[1],{5,3}},
{e,{1,2}},{e,{1,4}},{6,{2,5}}1};

(##**+2xx Use with cutconstruct=0 )
(=
momlist={k1,k2};
proplist={kl~2-ms[1], (k1+p3)~2-ms[1], (k1-k2)*2-ms[1],
(k2+p3)~2, (k2+p1+p3)~2,k27°2};
numerator={1};
*)

(#*=#=2% propagator powers (optional) )

powerlist=Table[1,{i,Length[proplist]}];

(******* On-shell conditions (optional) )
onshell={ssp[1]->0,55p[2]->8,s5p[3]->sp[1,2],sp[1,3]->6,5p[2,3]->0};

(#*+#22x Set Dimension :

Dim=4-2*eps;




Program Test Run

» ./launch -p param.input -t template.m

=xxxxaxxsx This is SecDec version 2.9 =sss=ssxss
Authors: Sophia Borowka, Jonathon Carter, Gudrun Heinrich

graph = P126

primary sectors 1,2,3,4,5,6, will be calculated

calculating F and U . .

done

written to /home/pclaasa/sborowka/wark/SecDecBeta/loop/zloop/PlZE/FUN.M

results of the decomposition will be written to
/home/pcl335a/sborowka/Work/SecDecBeta/loop/21oop/P126
doing sector decomposition . .

done

working on pole structure: 2 logarithmic poles, @ linear poles, @ higher poles
C++ functions created for pole structure 216he

compiling 21ehe/epstothed ...

doing numerical integrations in P126/216h8/epstothe®

compiling 218h8/epstothe-1 ...

doing numerical integrations in P126/216h8/epstothe-1

compiling 216h@/epstothe-2 ...

doing numerical integratiens in P126/216h@/epstothe-2

working on pole structure: 1 legarithmic pele, © linear poles, @ higher poles
C++ functions created for pole structure 116he

compiling 116he/epstothed ...

doing numerical integrations in P126/116he/epstothe®

compiling 118h8/epstothe-1 ...

doing numerical integrations in P126/116h8/epstothe-1

working on pole structure: © logarithmic peles, © linear poles, © higher poles
C++ functions created for pole structure @18he

compiling 116h8/epstothed ...

doing numerical integrations in P126/016h8/epstothe®

Output written to /home/pcl335a/sborowka/Work/SecDecBeta/1oop/2100p/P126/P126 pfull.res




e
Get the Result

*#AQUTPUT: P126 p5 *¥wbskkibrskins

> resultfile P126_full.res B e 6.0 0.0 7.6

prop. mass: 1.8 0. 0. 8. 8. 0.
Prefactor=-Exp[-2EulerGamma*eps]

sxxxxs epsn-2 coeff *xwwxs

result =0.07563683
+0.1003924148 I
error =0.000493522517701388

+ 0.00139691015080074 I
CPUtime (all eps”-2 subfunctions) :H.E!I-{
CPUtime (longest eps*-2 subfunction) =6.81

#xdais opgnQ coeff *xsssx

result =0.9606978296750816
-0.908781551612644 1
error =0.00754504726896407

+ 0.0442867373250588 I
CPUtime (all eps”® subfunctions) =2.44
CPUtime (longest eps~@ subfunction) =8.51

Time taken for decomposition = 2.085725

Total time for subtraction and eps expansion = 41.5857 secs
Time taken for longest subtraction and eps expansion = 17.8613 secs



Deformation of the integration contour to integrate
mass thresholds )

> Integrand is analytically continued into the complex plane

F(@) = FE+i7(0) = 2O+ 50750 + 0
J

» The integration contour is deformed by
tZ=t+iy,

F) —A(1 tj)a}-(a

atj

Soper '99

Soper, Nagy, Binoth; Kurihara et al., Anastasiou et al., Freitas et al., Becker et al.



