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Motivation

NLO (SUSY)-QCD-corrections to SQCD particle-production at the LHC sizeable

(re)calculate NLO corrections to q̃q̃ production fully differential without

assuming mass-degenerate squarks (R. Gavin’s talk)

realistic simulation: parton-level production + decay + shower + ...

combination of fixed-order NLO calculation with parton shower non-trivial: avoid

double-counting

two NLO-matching-schemes:

MC@NLO [Frixione,Webber 2002]

POWHEG [Nason 2004]
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The POWHEG-method - a short overview

basic idea
generate the hardest emission first
then shower with a pT -veto⇒ subsequent radiation is guaranteed to be softer
works directly for pT -ordered shower
for angular-ordered shower: introduce so called truncated shower

’master-formula’: [Frixione, Nason, Oleari 2007]

dσPWG = B(Φn) dΦn

[
∆PWG(Φn, pmin

T ) + ∆PWG(Φn, pT )
R(Φn, Φrad )

B(Φn)
θ(pT − pmin

T )dΦrad

]
with the POWHEG-Sudakov

∆PWG(Φn, pT ) = exp

[
−
∫

dΦ′rad

R(Φn, Φ
′
rad )

B(Φn)
θ(kT (Φn, Φ

′
rad )− pT )

]
and the B-function

B(Φn) =
[
B(Φn) + V(Φn) +

∫ [
R(Φn, Φrad )− C(Φn, Φrad )

]
dΦrad

]
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Properties of the POWHEG ’master-formula’:

NLO accuracy for infrared safe observables (not ’sensitive’ to radiation→ only

B relevant; proof: see [Frixione, Nason, Oleari 2007])

NLO accuracy preserved in the hard region:

∆PWG(Φn, pmin
T )→ 0, ∆PWG(Φn, pT )→ 1

dσPWG ≈
B(Φn)

B(Φn)
R(Φn, Φrad )dΦndΦrad ≈ R(Φn, Φrad ) (1 +O(αs)) dΦn dΦrad

leading-log accuracy of a shower MonteCarlo in soft/collinear limit (pT → 0) is

not destroyed:

R(Φn, Φrad )

B(Φn)
dΦrad ≈

αs

2π

1

t
P(z) dt dz

dϕ

2π
, B ≈ B (1 +O(αs))
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The POWHEG-BOX[Alioli,Nason,Oleari,Re 2010]

POWHEG-BOX provides process-independent ingredients for a
POWHEG-implementation of arbitrary processes:

automatized subtraction-scheme (FKS-scheme [Frixione, Kunszt, Signer 1996])
generation of radiation phasespace
hardest radiation according to POWHEG-Sudakov
NLO distributions as ’by-product’
LHE-output: unweighted events which can be interfaced to shower program

user needs to implement the process specific parts

So far: no processes with strongly interacting BSM particles implemented→
small changes in the main routines of the code concerning the FKS subtraction
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Process-dependent parts

1 Flavour structures of Born & Real processes (including charge-conjugate

processes)

2 Parameters (couplings,masses,...)→ read in SLHA files

3 Born phase space

4 Born squared amplitude B, colour-correlated Born Bij

5 Virtual UV-renormalized, IR-finite part 2Re(MBM∗V )

6 Real matrix elements squared

7 Born colour-flows in large-Nc limit
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Checks and Results - Setup

cMSSM benchmark point, first two generations are degenerate in mass:

mũL mũR md̃L
md̃R

mg̃

1799.53 1769.21 1801.08 1756.40 1602.91

consider only ũ, d̃ , c̃ and s̃ production

PDF-set: CT10NLO with αs = 0.118 [Lai,Guzzi,Huston et al. 2010]

µR = µF = mq̃

different parton shower programs:

PYTHIA 6.4.26[Sjostrand,Mrenna,Skands 2006]: pT -ordered shower
HERWIG++ 2.6.1[Arnold,d’Errico,Gieseke et al. 2012]: default shower (angular ordered!) and
Dipole shower[Platzer,Gieseke 2011] (pT -ordered, only if decays are taken into account)

cluster partons with FASTJET 3.0.3[Cacciari,Salam 2006] into jets (anti-kT with R = 0.4)

only very basic cuts: pj
T > 20GeV, |ηj | < 2.8

no hadronization or MPI considered
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Checks - infrared safe observables
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Checks - exclusive observables
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T : Sudakov damping (NLO result diverges here)

high pq̃q̃
T : LHE/NLO ≈ 1.8⇒ 80% discrepancy!
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similar effect observed e.g. in gg → H [Alioli,Nason,Oleari,Re 2009] and

VV -production[Melia,Nason,Rontsch,Zanderighi 2011]

two reasons for this discrepancy:
1 assumption B/B ≈ 1 is not valid here: sizeable K -factor (K = 1.2)
2 different scales for B (µ = mq̃) and forR/B (pT of the radiated parton)

check these two points: perform event generation with B → B and

µR = µF = 400GeV
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T ≈ 400GeV
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idea [Alioli,Nason,Oleari,Re 2009]: ’split’ the real contributions in the master-formula, use
only IR-singular parts for radiation generation

R = Rs +Rr = FR+ (1−F)R; F =
h2

p2
T + h2

’new’ master-formula:

dσPWG = Bs(Φn) dΦn

[
∆s(Φn, pmin

T ) + ∆s(Φn, kT )
Rs(Φn, Φrad )

B(Φn)
θ(kT − pmin

T )dΦrad

]
+Rr dΦndΦrad
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Parton shower effects - PYTHIA6 vs. HERWIG++ default shower
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slightly higher rates at low pj1
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HERWIG++ predicts more central

jets
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Including the decays

consider shortest ’cascade’ q̃ → qχ̃0
1

decays are performed directly in the MC programs

problem when comparing PYTHIA6↔ HERWIG++:
1 PYTHIA6: performs decays during the ’showering step’ and adds radiation to

decay products, using as starting scale mq̃

2 HERWIG++: performs the decays before starting the shower
BUT: we have to impose a pT -veto, which is then applied to radiation off the
decay products, too
⇒ much smaller starting scale!
⇒ PYTHIA6 produces way more radiation

workaround: modify PYTHIA6 such that the same pT -veto is applied in the

’showering’ of the decay products
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NLO, good agreement for hard jets

PYTHIA6 predicts less third jets

third jets from PYTHIA6 again less

central
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Conclusions

implementation of q̃q̃ production in the POWHEG-BOX finished

behaviour of infrared save observables as expected

discrepancies in exclusive observables like pq̃q̃
T can be attributed to

enhancement by large K -factor and different scales

parton shower effects without decays areO(10%− 20%) for the hardest jet

taking into account the decays q̃ → qχ̃0
1:

modified PYTHIA for comparison
observe larger differences between the showers

Outlook:

add NLO corrections to decay

include the remaining SQCD production processes (q̃q̃, q̃g̃, g̃g̃)
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Backup

Christian Hangst – q̃q̃-production at NLO matched with parton showers May 14th , 2013 16/15



Rapidities after ’damping’
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No initial state radiation - without decays
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Decays included - part II
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No initial state radiation - including decays
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Jet shapes
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