

\tilde{q} ^{\tilde{q}}-production at NLO matched with parton showers

LoopFest 2013

Christian Hangst in coll. with R.Gavin, M.Krämer, M.Mühlleitner, M.Pellen, E.Popenda, M.Spira | May 14th, 2013

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

 OQ

 $($ ロ) $($ θ $)$ $($ θ $)$ $($ θ $)$

Motivation

- NLO (SUSY)-QCD-corrections to SQCD particle-production at the LHC sizeable
- (re)calculate NLO corrections to ˜*q*˜*q* production fully differential without assuming mass-degenerate squarks (R. Gavin's talk)
- realistic simulation: parton-level production + decay + shower + ...
- combination of fixed-order NLO calculation with parton shower non-trivial: avoid **double-counting**

The POWHEG-method - a short overview

- basic idea
	- **e** generate the hardest emission first
	- **then shower with a** p_T **-veto** \Rightarrow subsequent radiation is quaranteed to be softer
	- works directly for p_T -ordered shower
	- for angular-ordered shower: introduce so called truncated shower
- **n** 'master-formula': [Frixione, Nason, Oleari 2007]

$$
d\sigma_{\scriptscriptstyle P\text{WS}}=\overline{\mathcal{B}}(\varPhi_{\scriptscriptstyle n})\,d\varPhi_{\scriptscriptstyle n}\left[\Delta_{\scriptscriptstyle P\text{WS}}(\varPhi_{\scriptscriptstyle n},\rho_{\scriptscriptstyle T}^{\scriptscriptstyle{min}})+\Delta_{\scriptscriptstyle P\text{WS}}(\varPhi_{\scriptscriptstyle n},\rho_{\scriptscriptstyle T})\frac{\mathcal{R}(\varPhi_{\scriptscriptstyle n},\varPhi_{\scriptscriptstyle{rad}})}{\mathcal{B}(\varPhi_{\scriptscriptstyle n})}\theta(\rho_{\scriptscriptstyle T}-\rho_{\scriptscriptstyle T}^{\scriptscriptstyle{min}})d\varPhi_{\scriptscriptstyle{rad}}\right]
$$

with the POWHEG-Sudakov

$$
\Delta_{PWG}(\Phi_n, p_{\tau}) = \exp \left[- \int d\Phi'_{\text{rad}} \frac{\mathcal{R}(\Phi_n, \Phi'_{\text{rad}})}{\mathcal{B}(\Phi_n)} \theta(k_{\tau}(\Phi_n, \Phi'_{\text{rad}}) - p_{\tau}) \right]
$$

and the \overline{B} -function

$$
\overline{\mathcal{B}}(\varPhi_n) = \Bigl[\mathcal{B}(\varPhi_n) + \mathcal{V}(\varPhi_n) + \int \bigl[\mathcal{R}(\varPhi_n,\varPhi_\text{rad}) - \mathcal{C}(\varPhi_n,\varPhi_\text{rad}) \bigr] \text{d}\varPhi_\text{rad} \Bigr]
$$

Christian Hangst – \tilde{a} ^{*a*}[-production at NLO matched with parton showers](#page-0-0) May 14th , 2013 3/15

Properties of the POWHEG 'master-formula':

- NLO accuracy for infrared safe observables (not 'sensitive' to radiation \rightarrow only $\overline{\mathcal{B}}$ relevant; proof: see [Frixione, Nason, Oleari 2007])
- NLO accuracy preserved in the hard region:

$$
\Delta_{\textit{\tiny PWG}}(\varPhi_n, \rho_{\textit{\tiny T}}^{\textit{min}}) \rightarrow 0, \Delta_{\textit{\tiny PWG}}(\varPhi_n, \rho_{\textit{\tiny T}}) \rightarrow 1
$$

 $d\sigma_{\rm PWG} \approx \frac{\mathcal{B}(\varPhi_n)}{P(\varPhi_n)}$ $\frac{\partial^2 (1-\eta)}{\partial \left(\Phi_n\right)} \mathcal{R}(\Phi_n,\Phi_{\text{rad}})$ d Φ_n d $\Phi_\text{rad} \approx \mathcal{R}(\Phi_n,\Phi_{\text{rad}}) \left(1+\mathcal{O}(\alpha_s)\right)$ d Φ_n d Φ_rad

leading-log accuracy of a shower MonteCarlo in soft/collinear limit ($p_T \rightarrow 0$) is not destroyed:

$$
\frac{\mathcal{R}(\Phi_n,\Phi_{\text{rad}})}{\mathcal{B}(\Phi_n)}\text{d}\Phi_{\text{rad}} \approx \frac{\alpha_s}{2\pi}\frac{1}{t}\text{P}(z)\text{ d}t\, \text{d}z\frac{\text{d}\varphi}{2\pi},\quad \overline{\mathcal{B}} \approx \mathcal{B}\left(1+\mathcal{O}(\alpha_s)\right)
$$

K ロ ▶ K 何 ▶ K 국 ▶ K 국 ▶ 국 국 K 9 Q Q

Christian Hangst – \tilde{a} ^{q}[-production at NLO matched with parton showers](#page-0-0) May 14th , 2013 4/15

The POWHEG-BOX[Alioli,Nason,Oleari,Re 2010]

- POWHEG-BOX provides process-independent ingredients for a POWHEG-implementation of arbitrary processes:
	- **automatized subtraction-scheme (FKS-scheme** [Frixione, Kunszt, Signer 1996])
	- generation of radiation phasespace
	- hardest radiation according to POWHEG-Sudakov
	- NLO distributions as 'by-product'
	- **LHE-output: unweighted events which can be interfaced to shower program**
- user needs to implement the process specific parts
- So far: no processes with strongly interacting BSM particles implemented \rightarrow small changes in the main routines of the code concerning the FKS subtraction

Process-dependent parts

- ¹ Flavour structures of Born & Real processes (including charge-conjugate processes)
- Parameters (couplings, masses,...) \rightarrow read in SLHA files
- Born phase space
- 4 Born squared amplitude \mathcal{B} , colour-correlated Born \mathcal{B}_{ii}
- \bullet Virtual UV-renormalized, IR-finite part 2 $\textit{Re}(\mathcal{M}_B \mathcal{M}_V^*)$
- Real matrix elements squared
- ⁷ Born colour-flows in large-*N^c* limit

K ロ ▶ K 何 ▶ K 국 ▶ K 국 ▶ 국 국 K 9 Q Q

Checks and Results - Setup

cMSSM benchmark point, first two generations are degenerate in mass:

- **c** consider only \tilde{u} , \tilde{d} , \tilde{c} and \tilde{s} production
- **PDF-set: CT10NLO with** $\alpha_s = 0.118$ [Lai,Guzzi,Huston et al. 2010]
- $\mu_B = \mu_F = \overline{m}_{\tilde{q}}$
- different parton shower programs:
	- **PYTHIA 6.4.26**[Sjostrand,Mrenna,Skands 2006]: p_T -ordered shower
	- **HERWIG++ 2.6.1** [Arnold,d'Errico,Gieseke et al. 2012]: default shower (angular ordered!) and Dipole shower P latzer, Gieseke 2011] (p_T -ordered, only if decays are taken into account)
- cluster partons with FASTJET $3.0.3$ Cacciari, Salam 2006] into jets (anti- k_T with $R = 0.4$)
- only very basic cuts: $\mid \! \rho'_{\mathcal{T}} \! \mid >$ 20GeV, $\mid \! \eta_j \! \mid <$ 2.8
- no hadronization or MPI considered

KOD KAD KED KED EE AAA

Christian Hangst – \tilde{a} ^{\tilde{a}}[-production at NLO matched with parton showers](#page-0-0) May 14th , 2013 7/15

Checks - infrared safe observables

LHE: results after first (hardest) emission

 $\rho_{\mathcal{T}}^{\tilde{q}}$, $\eta^{\tilde{q}}$: sum of both \tilde{q} distributions

 \Rightarrow perfect agreement, i.e. NLO accuracy preserved

(ロ) (個) (ミ) (ミ) (ミ) ミニ のQ (V

Checks - exclusive observables

- similar effect observed e.g. in $qq \rightarrow H_{[Alioli, Nason, Oleari,Re 2009]}$ and *VV*-production[Melia,Nason,Rontsch,Zanderighi 2011]
- two reasons for this discrepancy:
	- **1** assumption $\overline{\mathcal{B}}/\mathcal{B} \approx 1$ is not valid here: sizeable *K*-factor ($K = 1.2$)
	- 2 different scales for $\overline{\mathcal{B}}$ ($\mu = \overline{m}_{\tilde{q}}$) and for \mathcal{R}/\mathcal{B} (p_{τ} of the radiated parton)
- check these two points: perform event generation with $\overline{\mathcal{B}} \to \mathcal{B}$ and

 $\mu_B = \mu_F = 400$ GeV

idea [Alioli,Nason,Oleari,Re 2009]: 'split' the real contributions in the master-formula, use only IR-singular parts for radiation generation

$$
\mathcal{R}=\mathcal{R}_s+\mathcal{R}_r=\mathcal{FR}+(1-\mathcal{F})\mathcal{R};\ \ \, \mathcal{F}=\frac{\hbar^2}{\rho_T^2+\hbar^2}
$$

n 'new' master-formula:

$$
d\sigma_{\text{PWS}} = \overline{\mathcal{B}_s}(\Phi_n) d\Phi_n \left[\Delta_s(\Phi_n, p_T^{\text{min}}) + \Delta_s(\Phi_n, k_T) \frac{\mathcal{R}_s(\Phi_n, \Phi_{\text{rad}})}{\mathcal{B}(\Phi_n)} \theta(k_T - p_T^{\text{min}}) d\Phi_{\text{rad}} \right] + \mathcal{R}_r d\Phi_n d\Phi_{\text{rad}}
$$

Parton shower effects - PYTHIA6 vs. HERWIG++ default shower

- **n** inclusive quantities hardly affected
- $p_T^{j_1}$ softer than NLO, HERWIG++ slightly higher rates at low $p_T^{j_1}$
- HERWIG++ predicts more central jets

[Motivation](#page-1-0) The POWHEG[-method](#page-2-0) [Checks of the implementation and parton shower effects](#page-6-0) [Conclusions](#page-14-0)

Christian Hangst – $\tilde{q}\tilde{q}$ [-production at NLO matched with parton showers](#page-0-0) May 14th, 2013 12/15

(ロ) (個) (ミ) (ミ) (ミ) ミニ のQ (V

Including the decays

- consider shortest 'cascade' $\widetilde{q} \rightarrow q \widetilde{\chi}^0_1$
- decays are performed directly in the MC programs
- problem when comparing PYTHIA6 \leftrightarrow HERWIG++:
	- ¹ **PYTHIA6**: performs decays during the 'showering step' and adds radiation to decay products, using as starting scale *m*˜*^q*
	- ² **HERWIG++**: performs the decays before starting the shower BUT: we have to impose a p_T -veto, which is then applied to radiation off the decay products, too
		- \Rightarrow much smaller starting scale!
		- ⇒ PYTHIA6 produces way more radiation
- workaround: modify PYTHIA6 such that the same p_T -veto is applied in the 'showering' of the decay products

K ロ ▶ K 何 ▶ K 국 ▶ K 국 ▶ 국 국 K 9 Q Q

- second (and first) jet softer than NLO, good agreement for hard jets
- PYTHIA6 predicts less third jets
- third jets from PYTHIA6 again less central

(ロ) (個) (ミ) (ミ) (ミ) ミニ のQ (V

[Motivation](#page-1-0) The POWHEG[-method](#page-2-0) [Checks of the implementation and parton shower effects](#page-6-0) [Conclusions](#page-14-0) Christian Hangst – $\tilde{q}\tilde{q}$ [-production at NLO matched with parton showers](#page-0-0) May 14th, 2013 14/15

Conclusions

- implementation of ˜*q*˜*q* production in the POWHEG-BOX finished
- behaviour of infrared save observables as expected
- discrepancies in exclusive observables like $\rho^{\widetilde{q} \widetilde{q}}_{{\mathcal{T}}}$ can be attributed to enhancement by large *K*-factor and different scales
- **■** parton shower effects without decays are $\mathcal{O}(10\% 20\%)$ for the hardest jet
- taking into account the decays $\widetilde{q} \rightarrow q \widetilde{\chi}_1^0$:
	- **n** modified PYTHIA for comparison
	- observe larger differences between the showers

Outlook:

- add NLO corrections to decay
- include the remaining SQCD production processes (\tilde{a} \tilde{a} *,* \tilde{a} *a*^{*g*})

KOD KAD KED KED EE AAA

Backup

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [특] 늘 ⊙ Q @

Rapidities after 'damping'

No initial state radiation - without decays

K ロ ▶ K 母 ▶ K ヨ ▶ K ヨ ▶ | ヨ ヨ の 9 0

Decays included - part II

No initial state radiation - including decays

Jet shapes

- $r =$ √ $\Delta y^2 + \Delta \phi^2$
- $\Delta r = 0.05$
- $\rho_{\mathcal{T}}^{\vec{\mu}}(r_1,r_2)$: summed transverse momentum of all partons which are clustered into the jet and lie in an annulus with inner/outer radius r_1/r_2 around the jet axis

K ロ ▶ K 何 ▶ K 국 ▶ K 국 ▶ 국 국 K 9 Q Q