

Experimental results for V+jets

A. Paramonov (Argonne National Laboratory)

Loopfest XII, 2013

Outline

- Motivation for V+jets measurements
- Experimental issues: backgrounds and instrumental uncertainties
- High cross-section: V+jets (V=W,Z)
- Low cross-section: V+b-jets
- Conclusions

Motivation for studies of jets produced with a W or Z boson

- Well-understood process to test pQCD calculations and to validate detector performance
 - m(V) gives a scale to the QCD calculations
- Foundation for development of novel pQCD calculations; choices of scales, jet-parton matching schemes, and parton showering
 - Alpgen, Sherpa, MCFM, BlackHat-Sherpa, Madgraph, etc.
- Z+jets is complementary to W+jets
 - Z+jets and W+jets subject to different instrumental effects and backgrounds; it is useful to look at both processes

Motivation for studies of jets produced with a W or Z boson

- An irreducible background to SM measurements:
 - tt, single top
 - VBF, WW-scattering
 - − Higgs ($H \rightarrow WW$, $WH \rightarrow Wbb$)
- and new physics
 - SUSY etc.

- Forward jets at large rapidities
- Rapidity gaps
- Jet vetoes
- Di-jet masses (H→bb)
- Multi-jet processes
- Processes with large H_T

Motivation for studies of associated production of heavy flavor (*b*- and *c*-) jets and a gauge boson

- Background to new physics
- Background to WH→Wbb
- Constraints on PDFs
- The final states are tricky to calculate
 → the experimental input is key for future theory developments (QCD calc)
- The LHC gives sensitivity to a different phase-space than the Tevatron:
 - pp instead of pp (better probe of sea quark and gluons)
 - 7 TeV instead of 1.96 TeV (wider reach in transferred momenta)

Observables

- Cross sections and their ratios
 - − Inclusive $\sigma(V + \ge N \text{ jets})$
 - Differential: e.g. $d\sigma/dp_T(N^{th} jet)$
 - Ratios of cross sections: σ(V + ≥N jets)/σ(V + ≥N-1 jets)
 →Cancelation of uncertainties
- Those are often calculated for phase-space resembling the detector acceptance
 - W's and Z's are identified using central electrons and muons
 - Identification of heavy quarks (b- and c-) utilizes secondary vertices (lifetime and mass)
- Understanding of backgrounds is the key issue

Backgrounds to Z+jets ($Z \rightarrow ee \text{ or } Z \rightarrow \mu\mu$)

- Irreducible backgrounds (tt, Wt, WZ, ZZ, WW, and Z+γ) are small and estimated using simulations
 - tt is constrained using data (di-lepton e-μ events)
- "fake" (non-prompt) leptons are from multi-jet production and are obtained using data

- Nicely complements the Z+jets processes with higher statistics, different background composition, and sensitivity to different PDFs
- Multi-jet events is a significant background at low jet multiplicities
 Important to do electron and muon channels simultaneously
- The top quark pair production becomes the dominant background at high jet multiplicity (at 3-4) → One of the limiting factors

Systematic Uncertainties

- Dominated by the uncertainty on the jet response (JES)
 - Increases for forward jets and decreased with jet p_T
 - b-tagging efficiency is important for the corresponding channels (W+b, Z+b, Z+bb)

- Accurate predictions require ME+PS approach (Alpgen, MadGraph, & Sherpa);
 PS-only simulations (Pythia) fail at high jet multiplicity, >1 jet
- Crucial for multiple measurements and searches (e.g. separation between WW and tt; BSM searches using high jet multiplicities)
- NLO calculation (BlackHat-Sherpa) are superbly accurate.

Ratios of cross sections: $\sigma(V + N_{jet})/\sigma(V + N_{jet}-1)$

- Cancelation of systematic and theory uncertainties → Robust way to compare data and theory
- Again, superior agreement with NLO calculations in W+jets and Z+jets

Ratios of cross sections: $\sigma(Z + N_{jet})/\sigma(Z + N_{jet}-1)$

- Predictions work quite well for
 - exclusive jet multiplicities (left)
 - Events with an energetic jet: pt(jet 1)>150 GeV (right)

Kinematic properties of jet production: p_T

Well reproduced by NLO and LO (ME+PS) predictions

Rapidity of jets; di-jet separation

ATLAS provides wide coverage for rapidity of jets.

- Required for development of ME-PS simulations
- Jet kinematic distributions are key for WW-scattering and VBF

Event observables - sensitivity to new physics

- dơ/dH_T [pb/GeV W→lv + jets 10² Ldt=36 pb ⊖ Data 2010.√s=7 TeV ALPGEN SHERPA **BLACKHAT-SHERPA** ATLAS 10⁻¹ 10^{-2} 10^{-3} 10⁻⁴ 10⁻⁵ 10⁻⁶ anti-k_⊤ jets, R=0.4 10⁻⁷ Theory/Data + ≥1 jet Theory/Data 3 / W + ≥2 jets ATLAS: $W \rightarrow \ell v$ 200 400 600 H_T [GeV]
- Searches for heavy particles use H_T (scalar sum of p_T of all reconstructed objects) or M(jets); the discrepancy is by definition
- They are often used as a scale in NLO calculations:
 - The choice of scales evolved M(W) \rightarrow M(W)+p_T(W) \rightarrow H_T (or M(jets))

Discrepancies in the H_T distribution

16

NLO calculation for ${\rm H}_{\rm T}$

- Each NLO sample contains one additional emission beyond the base number of parton emission
- Events with high HT contain multiple jets → The conventional NLO calculations does not access the phase space
- Exclusive (matched) some of NLO calculations describes the high-H_T tail well

 H_{T} [GeV]

Jets in the future measurements (VBF and WWscattering)

- Future observations of VBF and WW-scattering will rely on our understanding of forward jets and rapidity gaps between jets.
 - W, Z, and H bosons via VBF

Two-jet rapidity separation in pp collisions

Simulationstend to predict more jets separated by large rapidities

VBF Selection and Jet Veto

Pre-selection: m(j1,j2)>350 GeV && |y(j1)-y(j2)|>3.0

Measurement of Z+b and Z+bb production

Test of perturbative QCD and heavy-flavor CMS 5 fb⁻¹: Z+b+jets quark PDF's

Multiplicity bin	Measured	MadGraph 5F	MadGraph 4F
$\sigma(Z(\ell\ell)+1b) (pb)$	$3.52 \pm 0.02 \pm 0.20$	3.66 ± 0.02	3.11 ± 0.03
$\sigma(Z(\ell \ell)+2b)$ (pb)	$0.36 \pm 0.01 \pm 0.07$	0.37 ± 0.01	$0.38 {\pm} 0.01$
$\sigma(Z(\ell \ell) + b) (pb)$	$3.88 \pm 0.02 \pm 0.22$	4.03 ± 0.02	$3.49 {\pm} 0.03$
$\sigma(Z(\ell \ell)+b)/\sigma(Z(\ell \ell)+j)$ (%)	$5.15 \pm 0.03 \pm 0.25$	5.35 ± 0.02	$4.60 {\pm} 0.03$

At CDF the measured cross section are in agreement with MCFM

$$\frac{\sigma_{Z+bjet}}{\sigma_{Z}} = 0.261 \pm 0.023^{stat} \pm 0.029^{syst}\%$$

$$\frac{\sigma_{Z+bjet}}{\sigma_{Zjet}} = 2.08 \pm 0.18^{stat} \pm 0.27^{syst}\%$$

$$\frac{\text{NLO } Q^2 = m_Z^2 + p_{T,Z}^2 | \text{NLO } Q^2 = < p_{T,jet}^2 > | 10^4$$

21

CDF Run II Preliminary

$Z+bb \rightarrow Angular separation$

- $Z \rightarrow ee \text{ and } Z \rightarrow \mu\mu$
- Jets are not used; reconstructed B-hadrons, B→D+X, using secondary vertices: pT(B)> 15 GeV && |η(B)|<2.0

Measurement of W+b and W+bb

tt background is the limiting factor to measure W+bb (2 b-jets)

Veto additional jets and leptons in events with $(n_{iet} \leq 2)$

D0 results for W+b show agreement between data and MCFM: NLO<DATA

Conclusions and Outlook

- Mostly good agreement between NLO and ME+PS predictions and data
- Accuracy of the measurement is already systematically limited by uncertainties on the JES and b-/c- tagging efficiencies
- Novel NLO calculations (BlackHat-Sherpa) work well up to V+4 jets!
- The comprehensive set of measurements enables development of future ME+PS simulations (Alpgen, Sherpa, etc)
 - Currently we have up to W+5p and Z+5p in ME+S → need up to V+8p or V+10p
- Precise understanding of the kinematic variables is crucial for the future measurements: WW-scattering, VH→Vbb, searches for BSM, etc

References

- CMS:
 - "Z transverse momentum distribution at 8 TeV", <u>https://cdsweb.cern.ch/record/1528579</u>
 - "Z+ b, bb jet cross sections at 7 TeV", <u>https://cdsweb.cern.ch/record/1540284</u>
 - "W+bb cross section at 7 TeV", <u>https://cdsweb.cern.ch/record/1537320</u>
 - "W+c differential cross section at 7 TeV", <u>https://cdsweb.cern.ch/record/1525727</u>
 - "Z+1 jet and photon+1 jet rapidity distributions at 7 TeV", <u>https://cdsweb.cern.ch/record/1524190</u>
 - "Z+jets, azimuthal correlations and event shape at 7 TeV" <u>http://arxiv.org/abs/1301.1646</u>
 - "W+2 jets, dijet mass spectrum at 7 TeV", <u>http://arxiv.org/abs/1208.3477</u>
 - "Z+bb jets, b hadron angular correlations at 7 TeV", <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEWK11015</u>
- ATLAS:
 - "Measurement of the production cross section of jets in association with a Z boson in pp collisions at Vs = 7 TeV with the ATLAS detector", <u>http://arxiv.org/abs/1304.7098</u>
 - <u>"Measurement of kt splitting scales in W->Inu events at sqrt(s) = 7 TeV with the ATLAS</u> <u>detector</u>", <u>http://arxiv.org/abs/1302.1415</u>
 - <u>"Measurement of the cross-section for W boson production in association with b-jets in pp collisions at Vs = 7 TeV with the ATLAS detector</u>", <u>http://arxiv.org/abs/1302.2929</u>
 - <u>"Study of jets produced in association with a W boson in pp collisions at sqrt(s) = 7 TeV with</u> the ATLAS detector", <u>http://arxiv.org/abs/1201.1276</u>

References

- CDF:
 - "Z/gamma* + Jets" <u>http://www-</u> cdf.fnal.gov/physics/new/qcd/abstracts/zjets_10fb.html
 - "Z + b-jet" <u>http://www-cdf.fnal.gov/physics/new/qcd/abstracts/zbjet2012.html</u>
 - "Transverse momentum cross section of e+e- pairs in the Z-boson region from $p\overline{p}$ collisions at Vs=1.96 TeV", Phys. Rev. D 86, 052010 (2012) B.
- D0:
 - "Studies of W+jets production", <u>http://arxiv.org/abs/1302.6508</u>
 - "Measurment of W+b-jet differential cross section",
 <u>http://dx.doi.org/10.1016/j.physletb.2012.12.044</u>, <u>http://arxiv.org/abs/1210.0627</u>