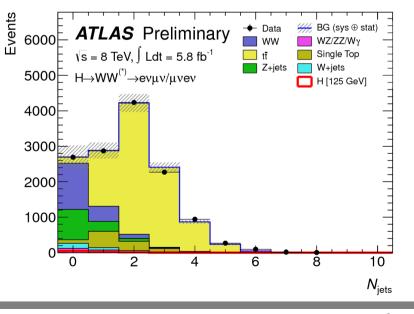
Jet vetoes and resummation

Xiaohui Liu

In collaboration with Frank Petriello

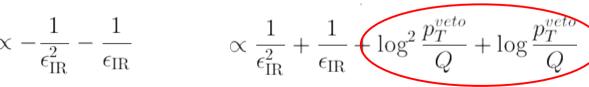
arXiv:1210.1906, arXiv:1303.4405

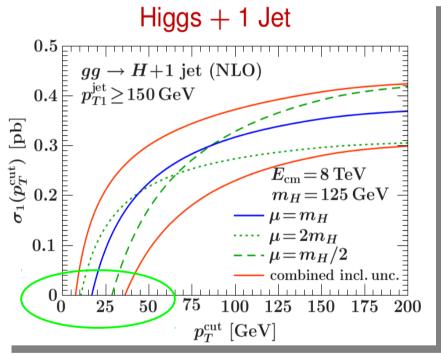
LoopFest XII, Florida State University



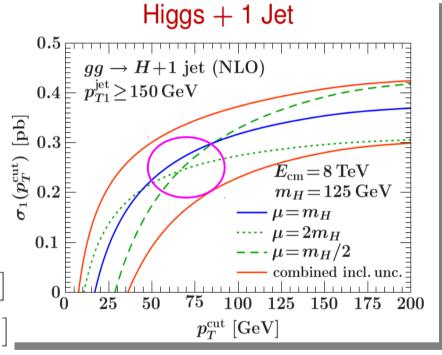
Outline

- Motivation
- H + 1j with jet veto
- Summary


- Jet bin cross section
 - Higgs measurement, BSM search ...
 - Beat the backgrounds
 - Use 25-30 GeV jet cut, restrict QCD activity


 $p_T^{veto} \sim 25 \text{GeV} \ll Q \sim m_H \sim 125 \text{GeV}$

- Jet bin cross section
 - Theoretical issues
 - Fixed order breaks down
 - Jet veto logs



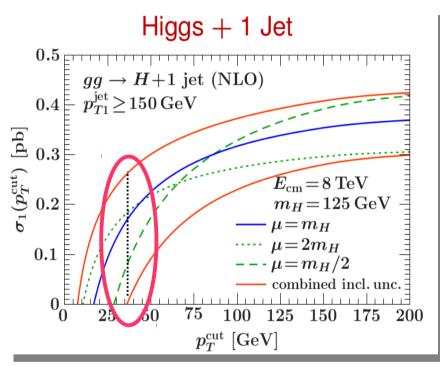
Stewart and Tackmann '11

- Jet bin cross section
 - Theoretical issues
 - Fixed order breaks down
 - Unreliable uncertainty

$$\sigma_{=1j}(p_{T1}^J, p_{\text{cut}}) = \sigma^{\geq 1j}(p_{T1}^J) - \sigma^{\geq 2j}(p_{T1}^J, p_{T2}^J > p_{\text{cut}})$$

$$\sigma_{p_{T_1}^J \ge 120 \text{GeV}}^{\ge 1j} = (0.31 \text{pb}) \left[1 + 2.9 \alpha_s + \mathcal{O}(\alpha_s^2) \right]$$

$$\sigma_{p_{T_1}^J \ge 120 \text{GeV}, p_{T_2}^J \ge 60 \text{GeV}}^{\ge 2j} = (0.31 \text{pb}) \left[3.7 \alpha_s + \mathcal{O}(\alpha_s^2) \right]$$



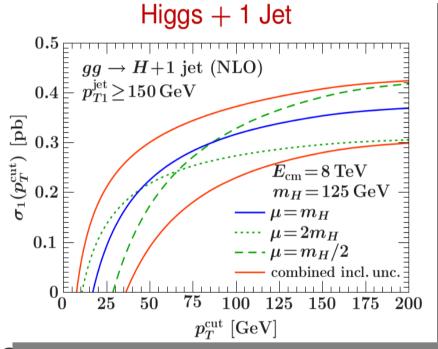
Accidental cancellation between large virtual corrections and logarithms leads to reduced scale errors. Does not necessarily persist to all orders

- Jet bin cross section
 - Theoretical issues
 - Fixed order breaks down
 - Unreliable uncertainty
 - ST prescription (Stewart and Tackmann '11)
 - Large theoretical errors

Fixed order uncertainty:

$$\delta_{1j}^2 = \delta_{>1j}^2 + \delta_{>2j}^2$$

Jet bin cross section

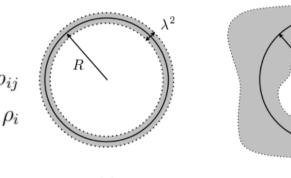

Theoretic	Source (0-jet)	Signal (%)	Bkg. (%)
	Inclusive ggF signal ren./fact. scale	13	-
Elizada.	1-jet incl. ggF signal ren./fact. scale	10	-
Fixed or	1-jet incl. ggF signal ren./fact. scale PDF model (signal only)	8	-
ما د ال مسمل ا	QCD scale (acceptance) Jet energy scale and resolution	4	-
 Unrellat 	Jet energy scale and resolution	4	2
\circ T	W+jets fake factor	-	5
• SI pres	WW theoretical model	-	5
- Large	Source (1-jet)	Signal (%)	Bkg. (%)
fix o	1-jet incl. ggF signal ren./fact. scale	26	-
	2-jet incl. ggF signal ren./fact. scale	15	-
	Parton shower/ U.E. model (signal only)	10	-
•	b-tagging efficiency	-	11
	PDF model (signal only)	7	-
	QCD scale (acceptance)	4	2
Measurement: I errors dominate r the other	Jet energy scale and resolution	1	3
	W+jets fake factor	-	5
	WW theoretical model	-	3
			

1 Jet LO) $E_{\rm cm} = 8 \, {\rm TeV}$ $m_H = 125 \,\mathrm{GeV}$ $\mu = m_H$ $\mu = 2m_H$ $- \cdot \mu = m_H/2$ combined incl. unc. $00 \ 125 \ 150 \ 175$ [GeV]

Higgs M Theoretical over the other

uncertainty sources

- Jet bin cross section
 - Theoretical issues
 - Fixed order breaks down
 - Unreliable uncertainty
 - ST prescription (Stewart and Tackmann '11)
 - Large theoretical errors

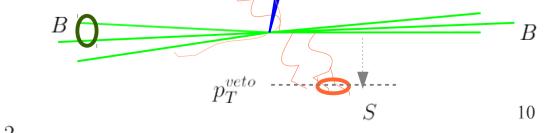


- Have to sum up jet veto logs
 - Improve accuracy systematically
 - Reliable error estimations

Not only for Higgs Also true for Z,W or NP and etc.⁸

- N(H/W/Z) + n-j (XL and Petriello, '12)
 - anti-kT $R \sim 0.4 0.5$ $\rho_{ij} = \min(p_{T,i}^{-1}, p_{T,j}^{-1})\Delta R_{ij}/R,$ $\rho_{i} = p_{T,i}^{-1}.$
 - pT veto $p_T^{veto} \sim 25 30 {
 m GeV}$
 - pTJ >> pT veto (important for current higgs measurement, will see ...)

- N(H/W/Z) + n-j (XL and Petriello, '12)
 - anti-kT $R \sim 0.4 0.5$
 - pT veto $p_T^{veto} \sim 25 30 {\rm GeV}$
 - pTJ >> pT veto (important for current higgs m


- $\begin{array}{ccc} (a) & & (b) \\ \text{anti-k}_{\text{T}} & & \text{C/A or k}_{\text{T}} \end{array}$
- Factorizability (Kelly, Walsh and Zuberi, '11, Becher, Neubert, '12, Tackmann, Walsh, Zuber,i'12 XL, Petriello'12)

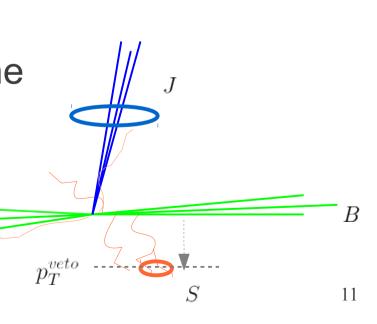
$$\rho_{JJ} \lesssim \rho_{J} \sim 1 \,, \quad \rho_{Js} \sim R^{-1} \,, \quad \rho_{Ja} \sim \rho_{Jb} \sim R^{-1} \log \lambda^{-1} \,,$$

$$\rho_{ss} \sim \rho_{aa} \sim \rho_{bb} \sim (\lambda R)^{-1} \,, \quad \rho_{sa} \sim \rho_{sb} \sim \rho_{ab} \sim (\lambda R)^{-1} \log \lambda^{-1} \,,$$

$$\rho_{s} \sim \rho_{a} \sim \rho_{b} \sim \lambda^{-1} \,.$$

$$p_s \sim Q(\lambda, \lambda, \lambda)$$
 soft $p_c \sim Q(1, \lambda^2, \lambda)$ collinear $\lambda \equiv \frac{p_T^{veto}}{m_H} \lesssim 0.2$

- N(H/W/Z) + n-j
 - anti-kT $R \sim 0.4 0.5$
 - pT veto $p_T^{veto} \sim 25 30 {
 m GeV}$
 - pTJ >> pT veto (important for current higgs measurement, will see ...) Tackmann, Walsh, Zuberi '12


0.4

0.2

-0.2

 $\sigma^{(2)}(p_T^{
m cut})/\sigma_{
m LO}$

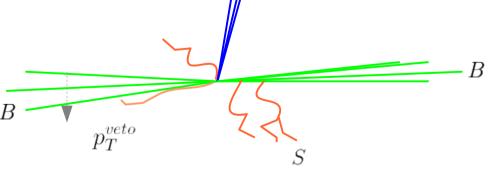
- Factorizability
 - Mixing between the soft and the beam sectors are power suppressed

 $p_T^{\mathrm{cut}} \; [\mathrm{GeV}]$

 $E_{\rm cm} = 8 \, {
m TeV}$ $m_H = 125 \, {
m GeV}$

50

- N(H/W/Z) + n-j
 - Factorization

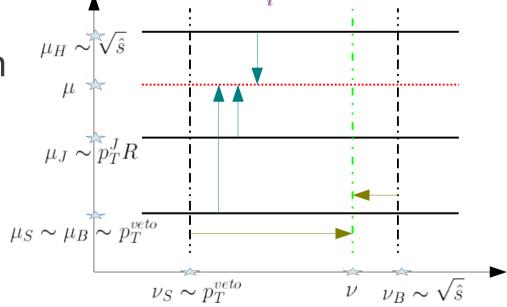

$$d\sigma = d\Phi_N d\Phi_{J_i} \mathcal{F}(\Phi_N, \Phi_{J_i}) \sum_{a,b} \int dx_a dx_b \frac{1}{2\hat{s}} (2\pi)^4 \delta^4 \left(q_a + q_b - \sum_i^n q_{J_i} - q_N \right)$$

$$\times \sum_{\text{spin color}}^{-} \operatorname{Tr}(H \cdot S) \mathcal{I}_{a,i_a j_a} \otimes f_{j_a}(x_a) \mathcal{I}_{b,i_b j_b} \otimes f_{j_b}(x_b) \prod_{i}^{n} J_{J_i}(R)$$

- Rapidity regulator (Chiu, Jain, Neill and Rothstein, '12)

$$W_n \to \sum_{\text{perm.}} \exp\left(-g_s \frac{1}{\bar{\mathcal{P}}} \left[w^2 \frac{|\bar{\mathcal{P}}|^{-\eta}}{\nu^{-\eta}} \bar{n} \cdot A_n \right] \right) ,$$

$$S_n \to \sum_{\text{perm}} \exp\left(-g_s \frac{1}{\mathcal{P}} \left[w \frac{|2\mathcal{P}^3|^{-\eta/2}}{\nu^{-\eta/2}} n \cdot A_s \right] \right), \quad B$$

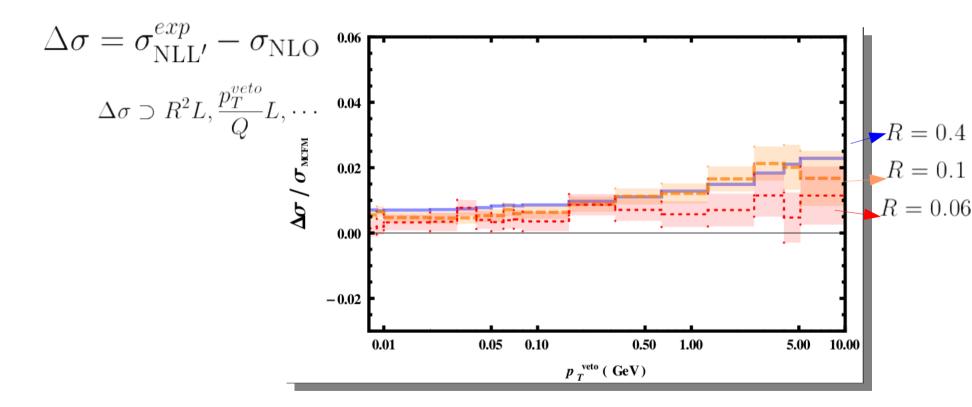


- N(H/W/Z) + n-j
 - Factorization

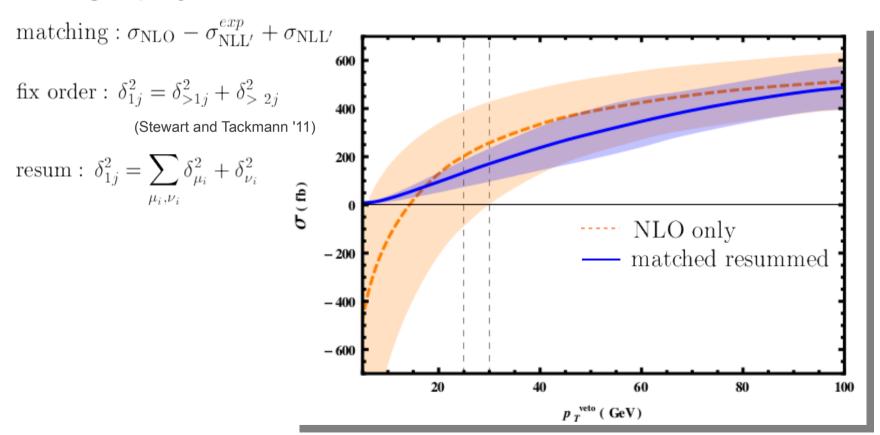
$$d\sigma = d\Phi_N d\Phi_{J_i} \mathcal{F}(\Phi_N, \Phi_{J_i}) \sum_{a,b} \int dx_a dx_b \frac{1}{2\hat{s}} (2\pi)^4 \delta^4 \left(q_a + q_b - \sum_i^n q_{J_i} - q_N \right)$$

$$\times \sum_{\text{spin color}} \operatorname{Tr}(H \cdot S) \, \mathcal{I}_{a,i_a j_a} \otimes f_{j_a}(x_a) \, \mathcal{I}_{b,i_b j_b} \otimes f_{j_b}(x_b) \prod_{i} J_{J_i}(R)$$

Resummation


- N(H/W/Z) + 1-j
 - NLL'

$$d\sigma_{\text{NLL'}} = d\Phi_H d\Phi_J \mathcal{F}(\Phi_H, \Phi_J) \sum_{a,b} \int dx_a dx_b \frac{1}{2\hat{s}} (2\pi)^4 \delta^4 (q_a + q_b - q_J - q_H)$$

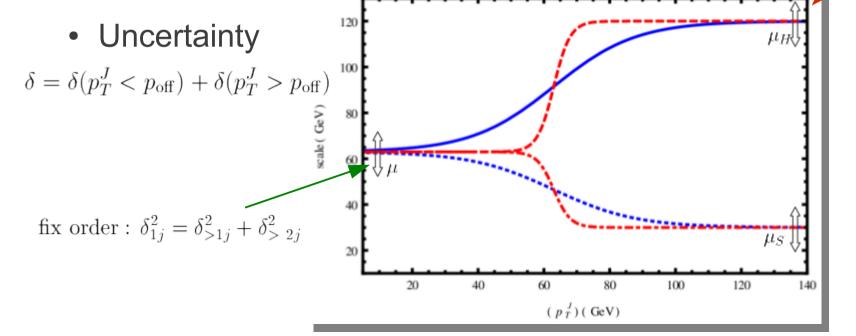

$$\times \sum_{\text{spin color}} \bar{T}r(H \cdot S) \mathcal{I}_{a,i_a j_a} \otimes f_{j_a}(x_a) \mathcal{I}_{b,i_b j_b} \otimes f_{j_b}(x_b) J_J(R) .$$

• Jet function $\Delta R = \Delta \eta^2 + \Delta \Phi^2 \rightarrow 2 \cosh \Delta \eta - 2 \cos \Delta \Phi$

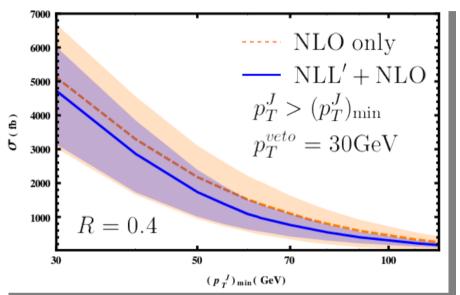
- Numerics (Higgs+1j)
 - Demonstration

- Numerics (Higgs+1j)
 - High pTj

- Numerics (Higgs+1j)
 - Entire Spectrum
 - Non-negligible contributions from high ptj region
 - Large uncertainty driven by the errors in high ptj region
 - Our formalism can be used to greatly reduce the errors


NLO:
$$\sigma(p_T^J > 30)(\text{pb})$$
 $\sigma(63 > p_T^J > 30)(\text{pb})$ $\sigma(p_T^J > 63)(\text{pb})$ $\sigma(p_T^J > 63)(\text{pb})$

XL and Petriello'12, XL and Petriello'13


- Numerics (Higgs+1j)
 - Entire Spectrum
 - Matching

 $\begin{aligned} \text{matching} : \sigma_{\text{NLO}} - \sigma_{\text{NLL'}}^{exp} + \sigma_{\text{NLL'}} \\ \mu_i^{int.} &= \mu + (\mu_i - \mu) \left[\left. 1 + \tanh \left(\kappa \left(p_T^J - p_{\text{off}} \right) \right) \right. \right] / 2 \,, \end{aligned}$

resum: $\delta_{1j}^2 = \sum_{\mu_i, \nu_i} \delta_{\mu_i}^2 + \delta_{\nu_i}^2$

- Numerical consequence
 - Higgs + 1j
 - Entire Spectrum
 - Conservative error estimation
 - Up to 25% reduction in the uncertainty

$m_H ({\rm GeV})$			$\sigma_{\rm NLL'+NLO}$ (pb)		$f_{ m NLL'+NLO}^{1j}$
124	25	$5.92^{+35\%}_{-46\%}$	3070	10/0	91/0
125	25	$5.85^{+34\%}_{-46\%}$	$5.55^{+29\%}_{-30\%}$		$0.284^{+33\%}_{-33\%}$
126	25	$5.75^{+35\%}_{-46\%}$	$5.47^{+30\%}_{-30\%}$		$0.284^{+34\%}_{-33\%}$
124	30	$5.25^{+31\%}_{-41\%}$	$4.83^{+29\%}_{-29\%}$	20,0	
125	30	$5.19^{+32\%}_{-41\%}$	$4.77^{+30\%}_{-29\%}$		
126	30	$5.12^{+32\%}_{-41\%}$	$4.72^{+30\%}_{-29\%}$	$0.266^{+35\%}_{-43\%}$	$0.246^{+33\%}_{-32\%}$

Extra comment

- Non-global logs for H+1j XL and Petriello'13
 - Occurs only in high ptj region starting at NLL'
 - Can be resummed in large Nc limit Dasgupta and Salam'13
 - Contribute roughly 3% to high ptj region at NLL'
 - Contribute around 0.1% to the total cross section

Summary

- Formalism to understanding jet bin cross section has been established (not only Higgs)
- More reliable prediction and reduced theory uncertainty
- Error estimation should be revised using the resummed results for higgs + 0j and higgs + 1j
- Fine tuning work worth probing (higher accuracy, log(R) issue, non-global logs, etc..)

Thanks