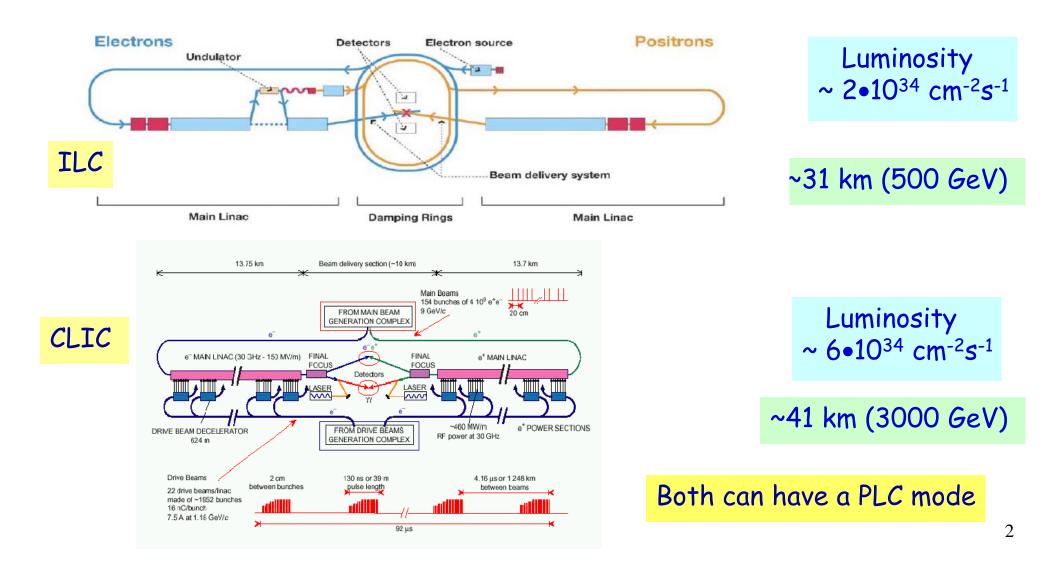
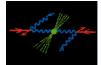


Physics at a Photon Collider

A.De Roeck CERN

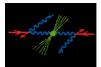
CERN April 2008





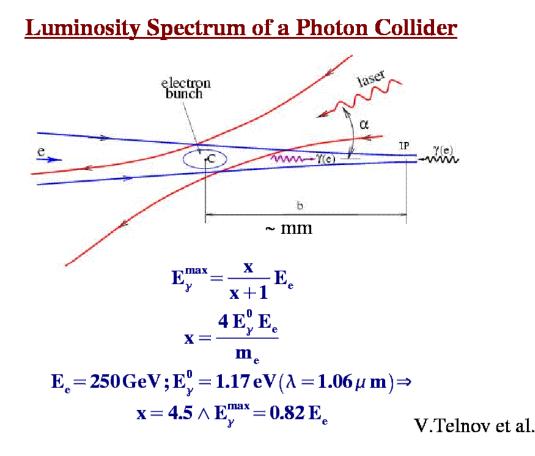
Linear Colliders

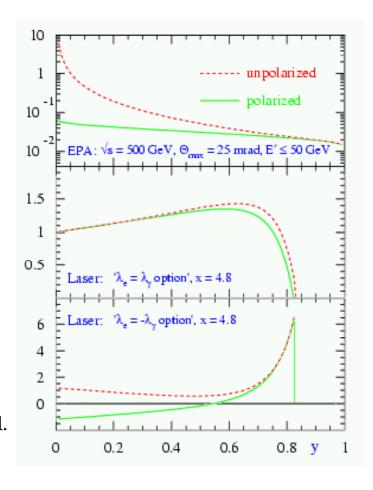
Contents


- Introduction: Kinematics, luminosity spectra
- QCD studies: photon structure
- Higgs production at a photon collider: SM and beyond the SM
- Supersymmetry
- W-boson interactions
- Extra Dimensions
- Top Quark

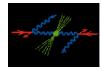
Further reading: B. Badelek et al., TESLA TDR part VI appendix E. Boos et al., hep-ph/0103090 Proceedings of the ECFA/DESY '01-'03 workshop. hep-ph/0308103, hep-ph/0311138/hep-ph/0307175 80 83 PLC05 proceedings, LCWS07 and Photon2007 proceedings

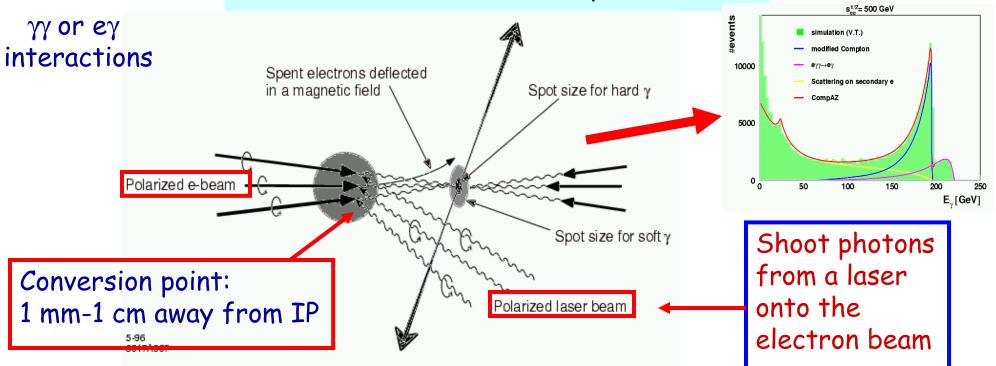
Took some slide from M. Krawczyk from LEI2007 (Dec 2007)


- company -


Two-photon interactions

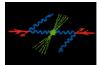
Two ways to have two photon interactions at linear colliders
Weizacker-Williams spectrum from electron beams, similar to LEP
Convert electron beams into photon beams by Compton


backscattering of laser photons \Rightarrow high energy $\gamma\gamma$ & high luminosity



A Photon Collider

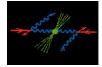
convert electron beams into photon beams

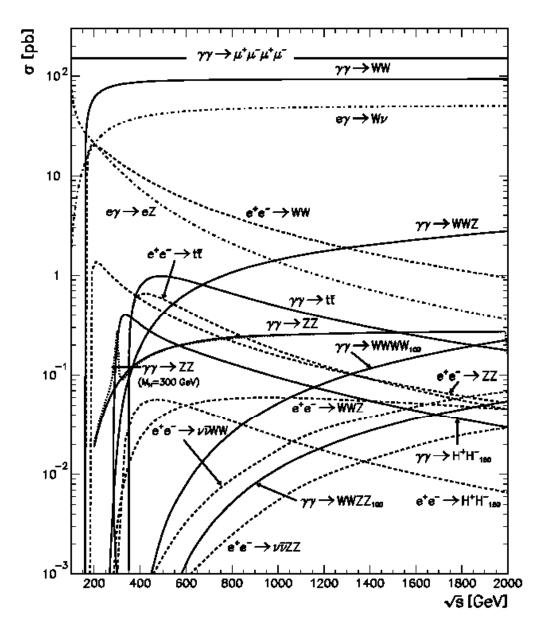


Compton backscattering on low energy (eV) laser photons

- Needs crossing angle (to avoid background from disrupted beams)
- Needs second interaction point (lasers, optics)
- Needs only e- beams (no positrons)

 \Rightarrow higher polarization (electrons 80% vs positrons 40-60%)

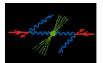



Physics at a $\gamma\gamma$ and $e\gamma$ collider

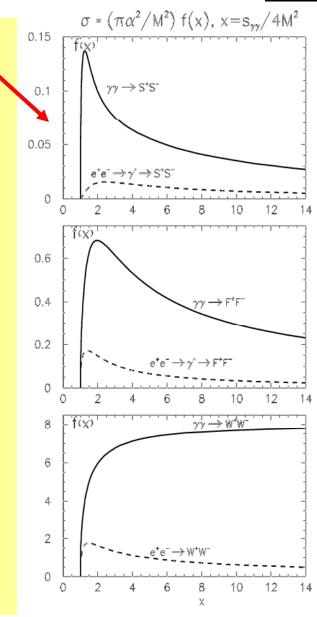
General

Cross sections for yy processes

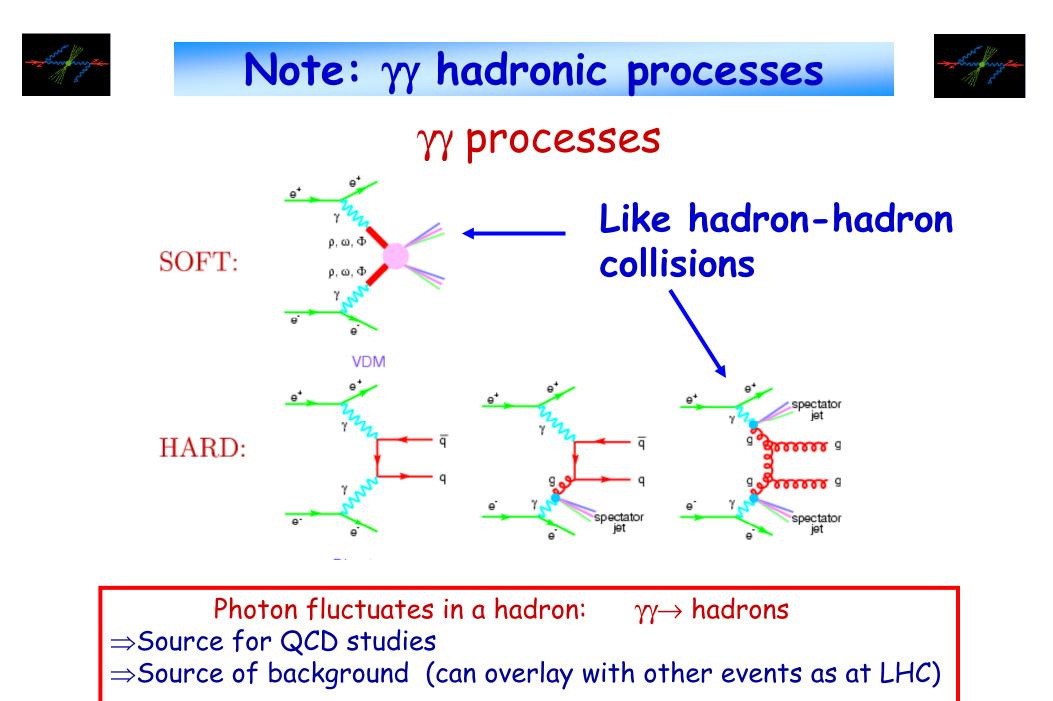
Historically: The Photon Collider (PLC) Ginzburg, Kotkin, Serbo, Telnov, Pizma ZhETF 34 514 (1981), JETP Lett. 34 491 (1982) where the basic ideas have been elaborated


Since then:

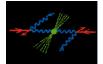
- •Over 1000 papers on physics issues of a PC
- Taken up seriously in LC studies R&D (slowly) progressing

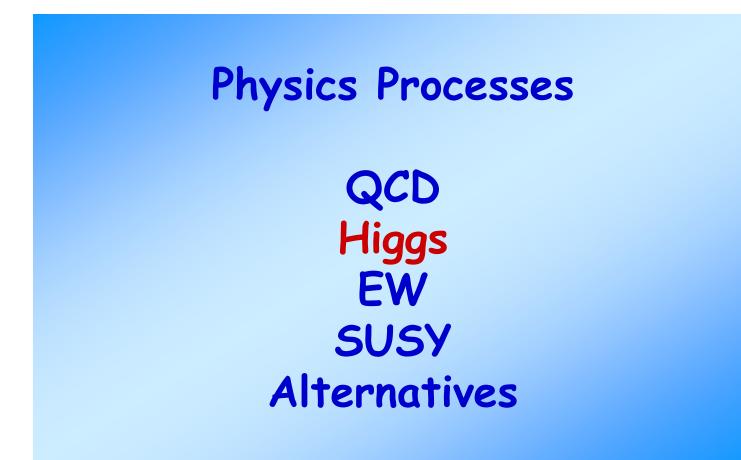

PLC part of LC roadmap considered as possible upgrade for a Linear Collider (Jeju 2002)

Advantages of $\gamma\gamma$ and $e\gamma$

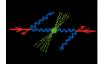


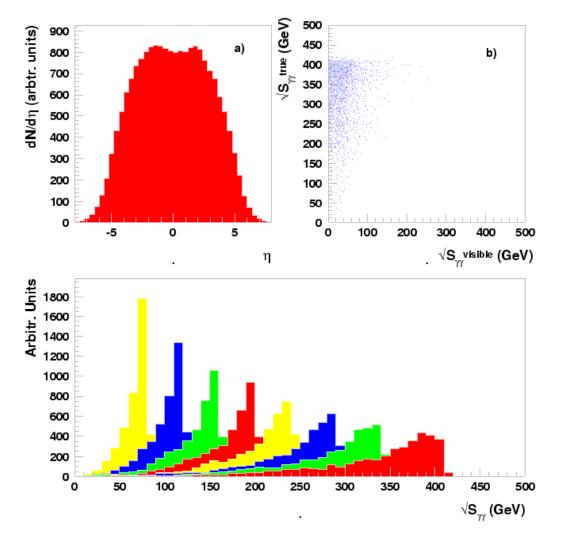
- Higher cross sections for charged particles
- Different J^{PC} state than in e+e-
- Higgs can be s-channel produced
- Higher mass reach in some channels
- Pure QED interaction (in e+e- also Z exchange)
- Higher polarization of initial state (>80%/beam)
- CP analysis opportunities (linear γ polarization...)
- \Rightarrow Physics Menu ... as for an e+e- collider
 - Higgs
 - Supersymmetry
 - Alternative theories (extra dimensions, etc.)
 - EW: e.g. Triple Gauge couplings, QCD, Top,...

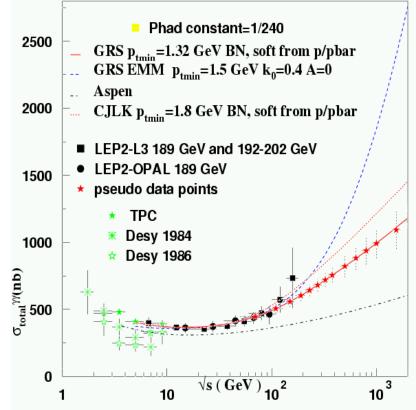




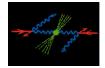
ering and	Reaction	Remarks	- company
2m 8	$\gamma\gamma \to H, h \to bb$	SM/MSSM Higgs, $M_{H,h} < 160 \text{ GeV}$	11 x
	$\gamma \gamma \rightarrow H, n \rightarrow 00$ $\gamma \gamma \rightarrow H \rightarrow WW(^*)$	SM Higgs, $140 < M_H < 190$ GeV	Higgs
	$\gamma \gamma \to H \to ZZ(^*)$	SM Higgs, $140 < M_H < 150$ GeV SM Higgs, $180 < M_H < 350$ GeV	riiggs
	$\gamma \gamma \to H \to \gamma \gamma$	SM Higgs, $120 < M_H < 160$ GeV SM Higgs, $120 < M_H < 160$ GeV	
		SM Higgs, $M_H > 350$ GeV	
Golden Processes	$\frac{\gamma\gamma \to H \to t\overline{t}}{\gamma\gamma \to H, A \to bb}$	MSSM heavy Higgs, interm. $\tan \beta$	
for a	$\gamma\gamma \to \tilde{f}\bar{\tilde{f}}, \; \tilde{\chi}_i^+\tilde{\chi}_i^-$	large cross sections	
Photon Collider	$\gamma\gamma ightarrow ilde{g} ilde{g}$	measurable cross sections	SUSY
	$\gamma\gamma \to H^+H^-$	large cross sections	
	$\gamma\gamma ightarrow S[ilde{t} ilde{t}]$	$t\bar{t}\bar{t}$ stoponium	
	$e\gamma ightarrow ilde{e}^- ilde{\chi}^0_1$	$M_{\tilde{e}^{}} < 0.9 \times 2E_0 - M_{\tilde{\chi}_1^0}$	
	$\gamma\gamma \rightarrow \gamma\gamma$	non-commutative theories	EDs,
	$e\gamma \rightarrow eG$	extra dimensions	
	$\gamma\gamma ightarrow \phi$	Radions	Trilin.
	$e\gamma \rightarrow \tilde{e}\tilde{G}$	superlight gravitions	coupl.
	$\gamma\gamma \to W^+W^-$	anom. W inter., extra dimensions	
	$e\gamma \to W^- \nu_e$	anom. W couplings	Top
Boos et al.,	$\gamma\gamma \to 4W/(Z)$	WW scatt., quartic anom. W,Z	Тор
hep-ph/0103090	$\gamma\gamma \to t\bar{t}$	anomalous top quark interactions	
	$e\gamma ightarrow \overline{t}b\nu_e$	anomalous Wtb coupling	QCD
	$\gamma\gamma \rightarrow hadrons$	total $\gamma\gamma$ cross section	
ADR (ECFA/DESY)	$e\gamma \to e^- X, \nu_e X$	NC and CC structure functions	
hep-ph/0311138	$\gamma g ightarrow q ar q, \ c ar c$	gluon in the photon	
	$\gamma\gamma ightarrow J/\psi J/\psi$	QCD Pomeron	

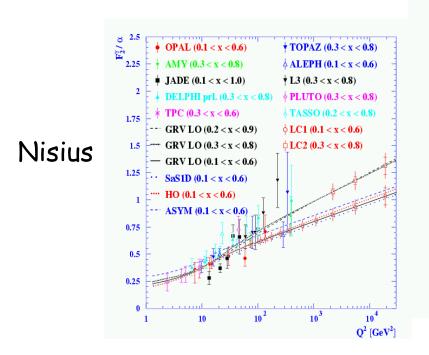


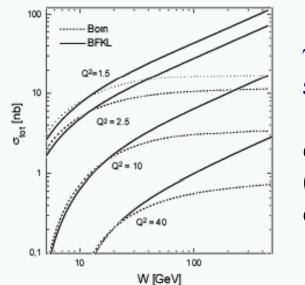



Total Cross Section

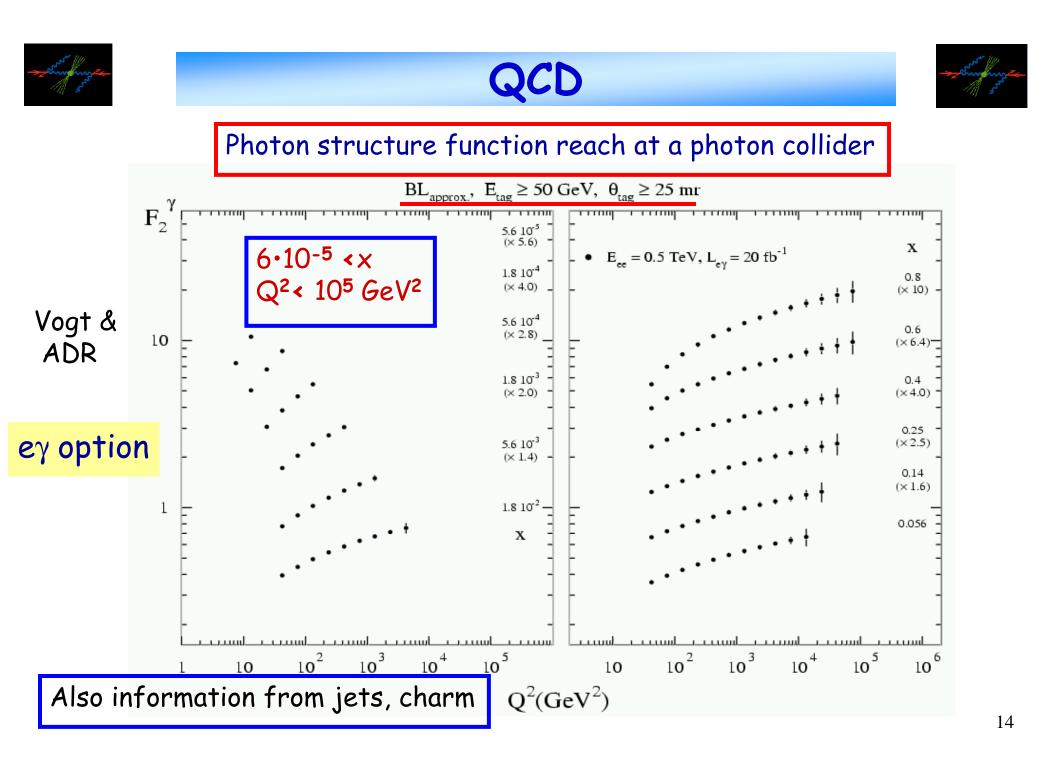
Fixed x = 4.8
ightarrow change laser energy

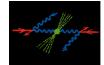

Pancheri, Grau, Godbole, ADR


Detector level study: Can measure $\sigma(\gamma\gamma)_{tot}$ to 7-15% at several energies



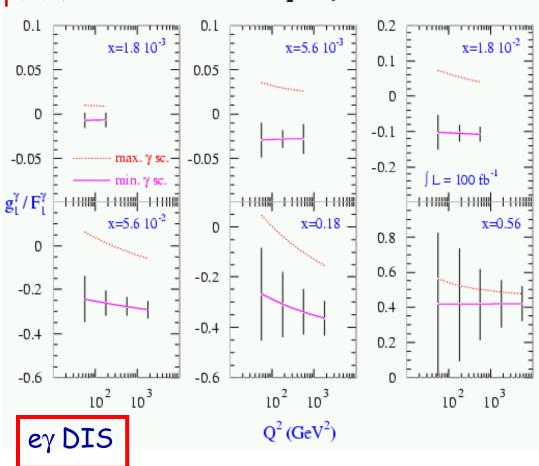
QCD e+e- collider

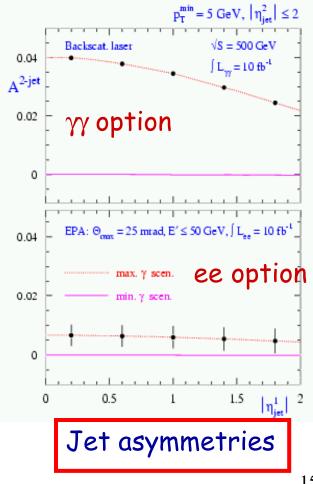

- What can be done with an e+e- collider
 - Structure of the photon
 - Polarised structure (few points)
 - $\gamma\gamma$ scattering (jets charm)
 - γγ total cross section (difficult!)
 - $\gamma^*\gamma^*$ total cross section : unique!
 - ...But no new physics search


 $\gamma^*\gamma^*$ cross section Kwiecinski et al. (and many others)

$\theta_{min} - \theta_{max}$	$\sigma(e^+)$	$e^- \rightarrow 0$	$e^+e^- + hadrons)$ [fb]	Events / year
	Born	Hard	Full (LS)	Full (LS)
10-20	134	365	450	90000
20-30	16	41	46	9200
30-40	3.5	8	9	1800
40-50	1.1	2.3	2.5	500
50-70	0.6	1.1	1.3	260
30–70	5.2	11	13	2600

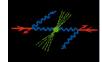
QCD

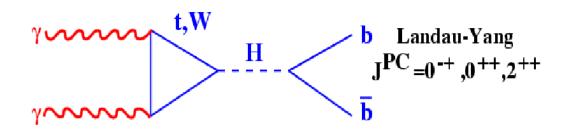



Unique: the polarised structure of the photon Use of polarised beams in e+e- or $\gamma\gamma/e\gamma$

 $g_1^\gamma(x,Q^2) = rac{1}{2} \Sigma_i e_i^2 \Delta q_i$

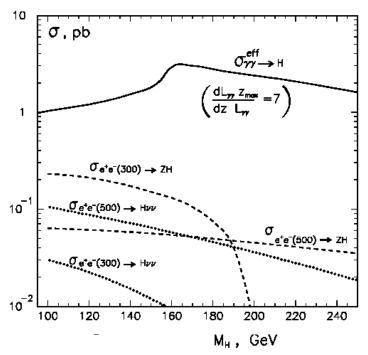
Stratmann and Vogelsang


ey option



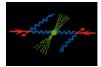
Higgs

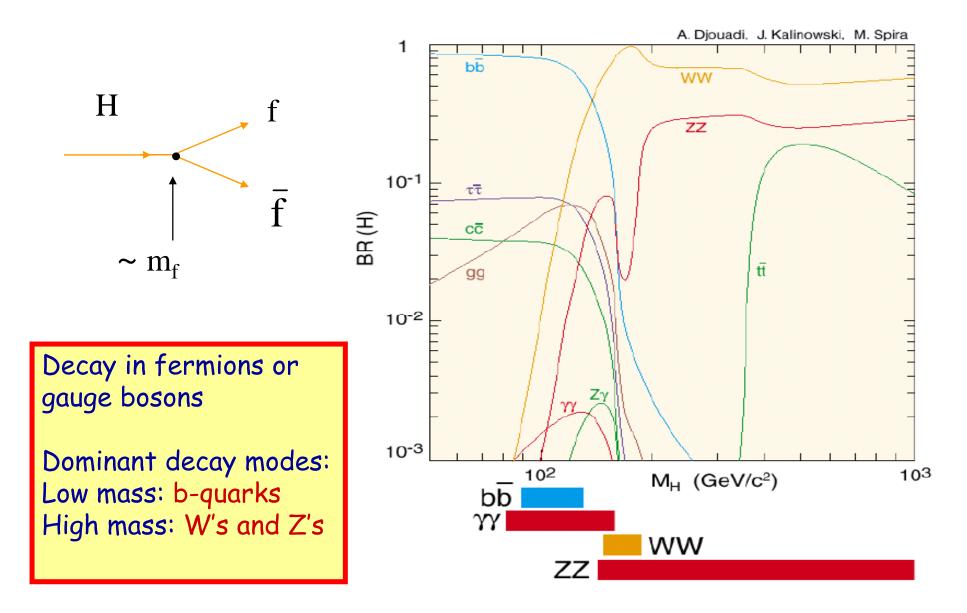
Production Mechanism for Neutral Higgs Bosons


Higgs produced in the s-channel

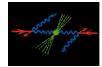
Enters only at the loop level Mainly sensitive to tH and WH couplings

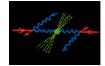
All charged particles (also new, unseen ones) contribute! These will affect the partial width $\Gamma(\gamma\gamma)$


Cross section larger than in e+e-


Heralded as THE key measurement for the gamma-gamma option

LEP/Tevatron data: SM Higgs M_H > 114 GeV and M_H< ~200 GeV (95 %CL)

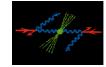



Suppose Higgs found a the LHC: what would you like to know

- Mass
- Spin & parity
- CP properties/Violation?
- How does it decay
 - Confirm Yukawa-like pattern (allow for up/down differences)
 - Can observe rare decays? ($H \rightarrow \gamma \gamma, \gamma Z, \mu \mu$)?
 - Confirm relations between fermion couplings and gauge couplings
 - Unexpected decay modes? Signs/confirmation of new physics?
 - What is the total width?
 - Are there new production modes ($\gamma\gamma \rightarrow \gamma h$ or Zh)?

The discovery of an unexpected CP nature of the H would be very exciting

Higgs studies

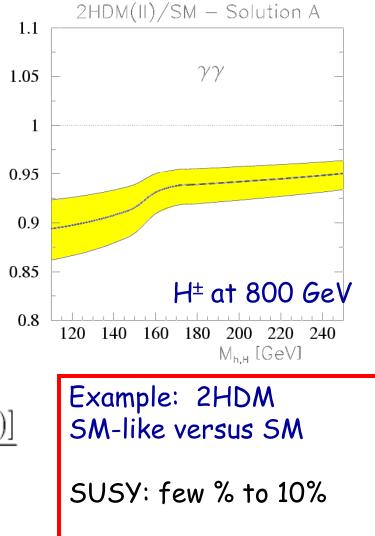


- Studies on Higgs production at a $\gamma\gamma$ collider

 - Study H \rightarrow WW, ZZ, $\gamma\gamma$
 - Study model separation power, via the partial width $\Gamma(\gamma\gamma)$
 - Study spin of Higgs in $H{\rightarrow}$ WW,ZZ
 - Study CP properties of the Higgs
 - Study MSSM Higgs (H,A): extend e+e- reach
 - Study of the charged Higgs
 - Study of the Higgs in NMSSM

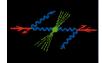
and the second s	
- www.	-
11 5	
111 5	
1997 - 1 9	

Higgs



The precise measurement of the 2-photon width of the Higgs is very important. It is affected by all charged particles that can occur in the loop \Rightarrow Very sensitive to new physics

$$\gamma$$
 H $J^{PC} = 0^{-+}, 0^{++}, 2^{++}$
QCD bb in $\gamma\gamma$ suppression: V. Khoze,...


Measure
$$\Gamma(h \to \gamma \gamma) = \frac{[\Gamma(h \to \gamma \gamma) BR(h \to b\bar{b})]}{[BR(h \to b\bar{b})]}$$

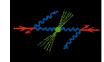
Note: BR(h \rightarrow bb) measured to 1-2% in e+e-

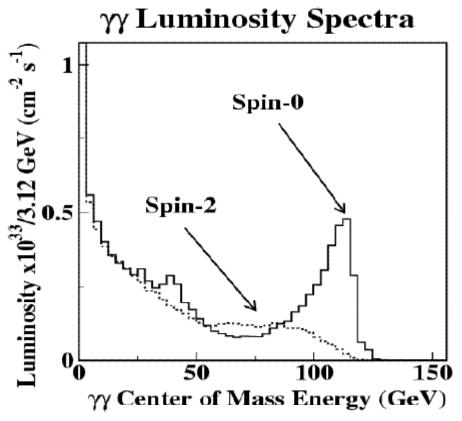
H→bb study

<u>Main background:</u> photon - photon -> bb(g) and cc(g)

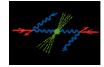
$$\frac{d\sigma^{Born}(J_z=0)}{dt} = \frac{12\pi\alpha^2 Q_q^4}{s^2} \frac{m_q^2 s^2 (s-2m_q^2)}{t_1^2 u_1^2} \propto \frac{m_q^2}{s}$$
$$\frac{d\sigma^{Born}(J_z=\pm 2)}{dt} = \frac{12\pi\alpha^2 Q_q^4 (t_1 u_1 - m_q^2 s)(u_1^2 + t_2^2 + 2m_q^2)}{s^2}$$

J_z suppression is only valid in LO


In general the background cross - sections have to be evaluated in NLO.

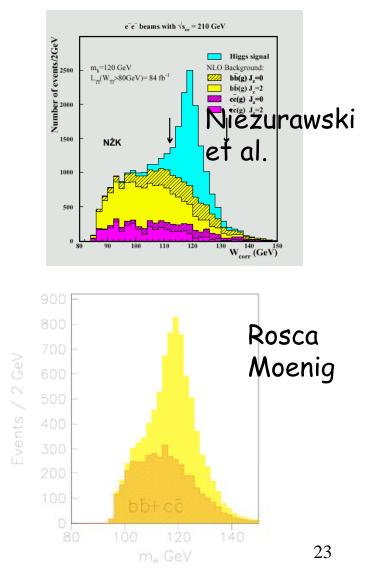

The NLO simulation of non - resonant background includes:

- exact one loop QCD corrections (Jikia, Tkablazde)
- non Sudakov form factor (Melles, Stirling, Khoze)

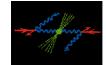

Two approaches:

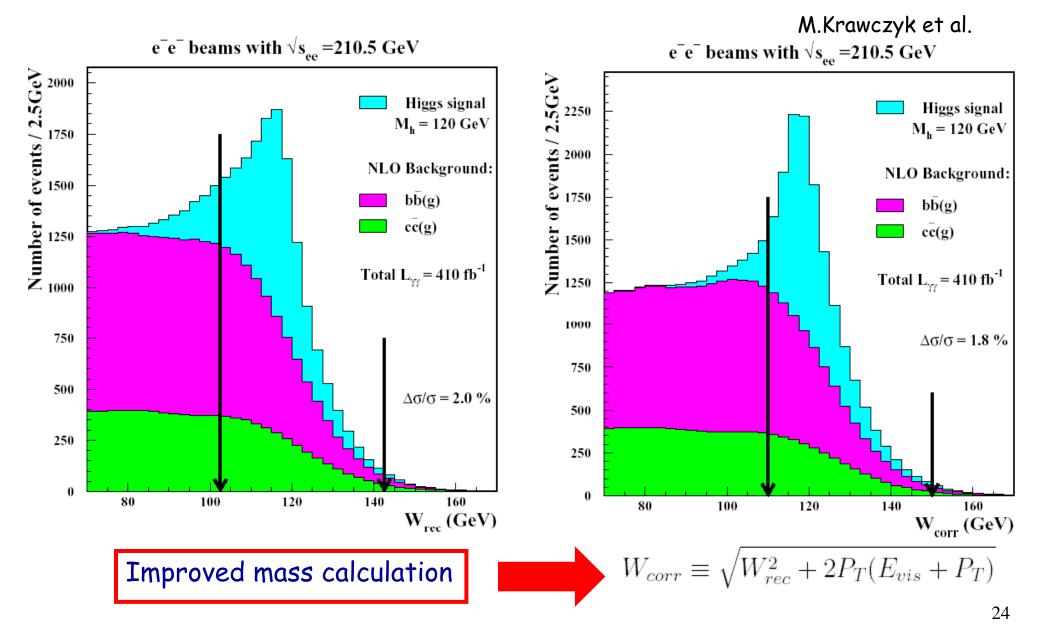
1) Tune energy so that $\sqrt{s_{ee}} = m_h / 0.79$

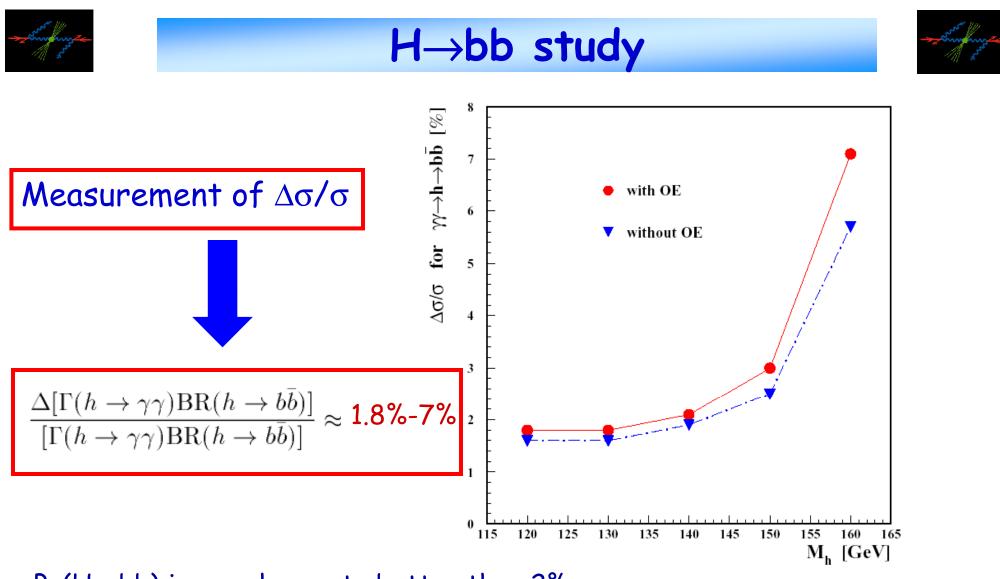
2) Go to maximum energy and search for Higgs in full spectrum

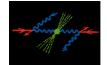


- Detailed analyses for Light SM Higgs
 - Realistic photon spectra: Tune collider energy such that maximum of the peak is at the Higgs mass
 - NLO QCD backgrounds (Jikia)
 - B-tagging via a neural network
 - Mass corrected for neutrinos
 - Add overlap QCD events (~1 per B.C.)
- Typical Cuts:
 - Durham jet algo. (y_{cut} = 0.02); θ_{min} = 450 mrad
 - |Pz|/Evis <0.15
 - 2 or 3 jets, each with $|\cos \theta| < 0.75$

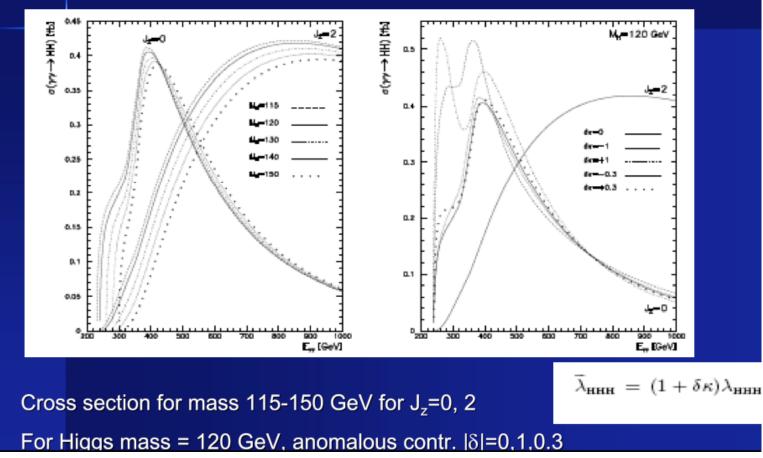

$$\frac{\Delta\sigma(\gamma\gamma\to h\to b\overline{b})}{\sigma(\gamma\gamma\to h\to b\overline{b})} = \frac{\Delta\left[\Gamma(h\to\gamma\gamma)\mathrm{Br}(h\to b\overline{b})\right]}{\left[\Gamma(h\to\gamma\gamma)\mathrm{Br}(h\to b\overline{b})\right]} = \frac{\sqrt{N_{obs}}}{N_{obs}-N_{bkgd}}.$$


Several analyses

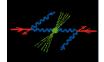



Br(H \rightarrow bb) in e+e- known to better than 2%

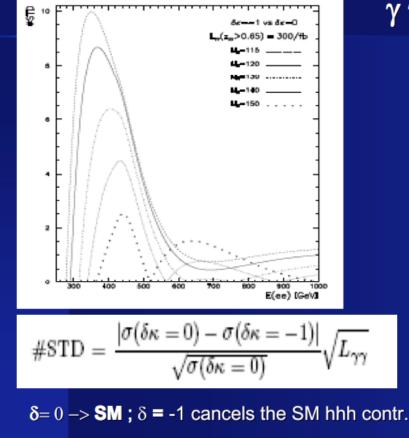
arXiv:0705.1259 \Rightarrow 2-3%

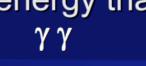

OE: overlap events Low energy ~ 1 extra events High energy ~ 2 extra events

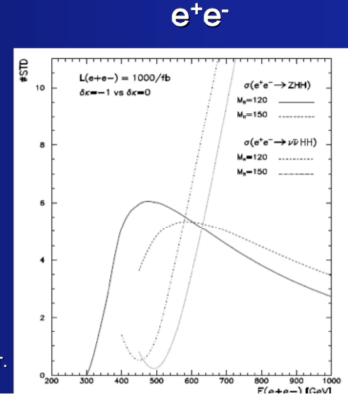
Higgs Self Coupling

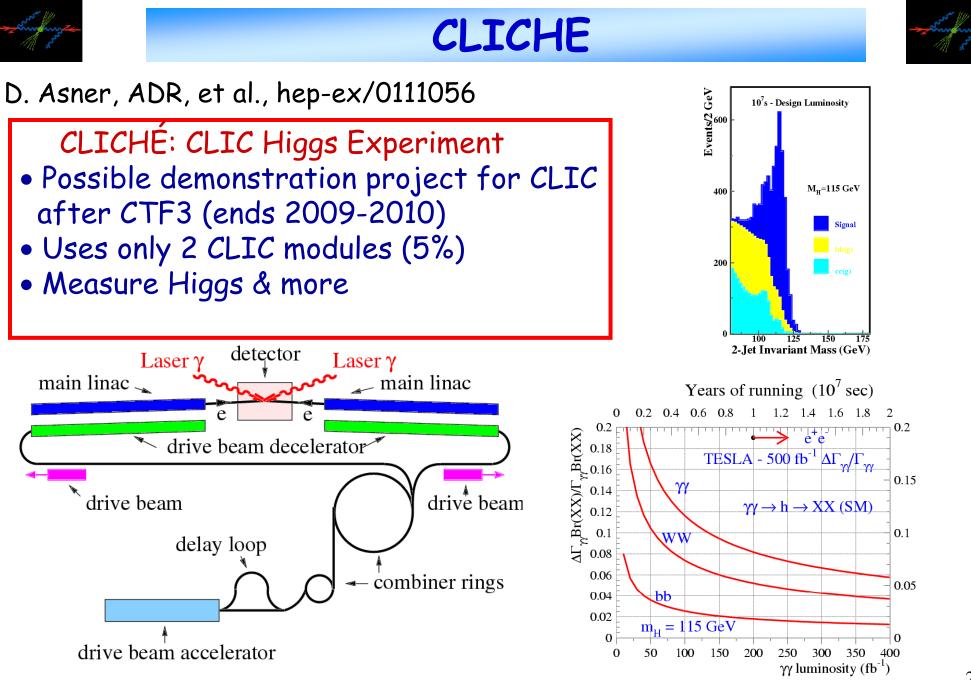


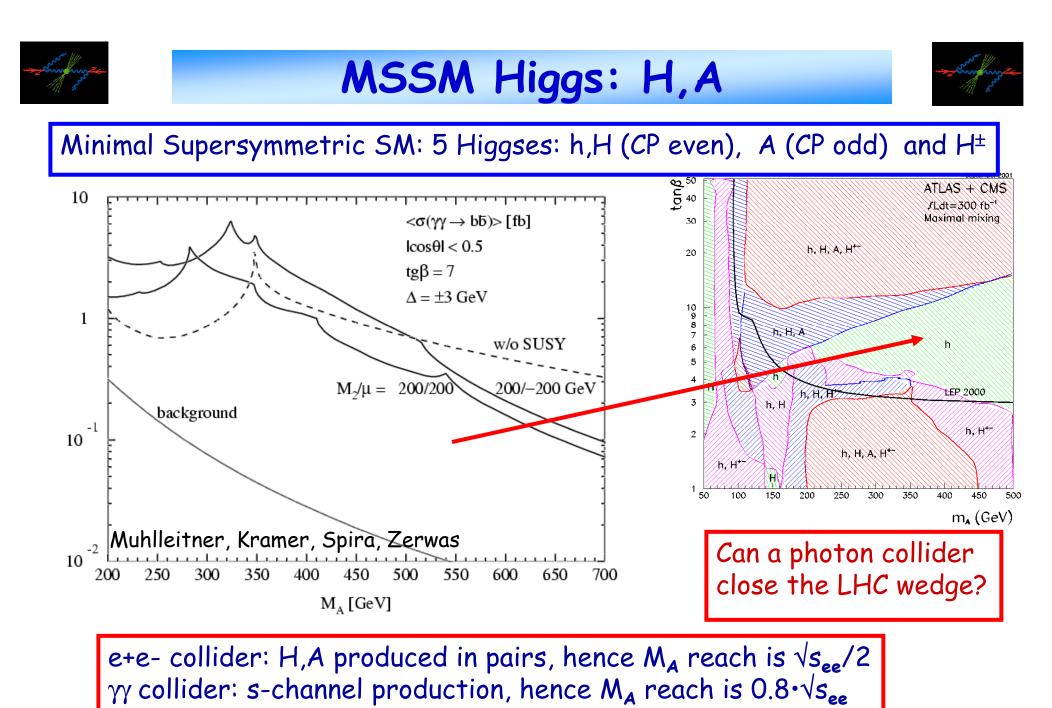
Self couplings in $\gamma \gamma \rightarrow hh$ Belusevic, Jikia '2004 box, triangle with W,top and h*->hh

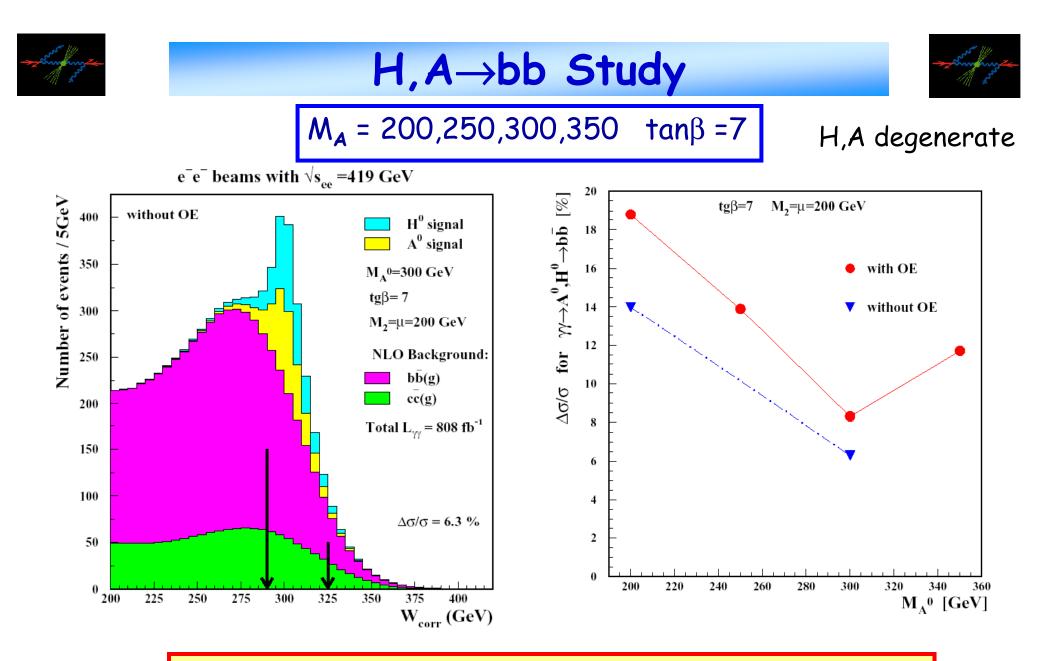


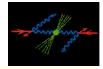


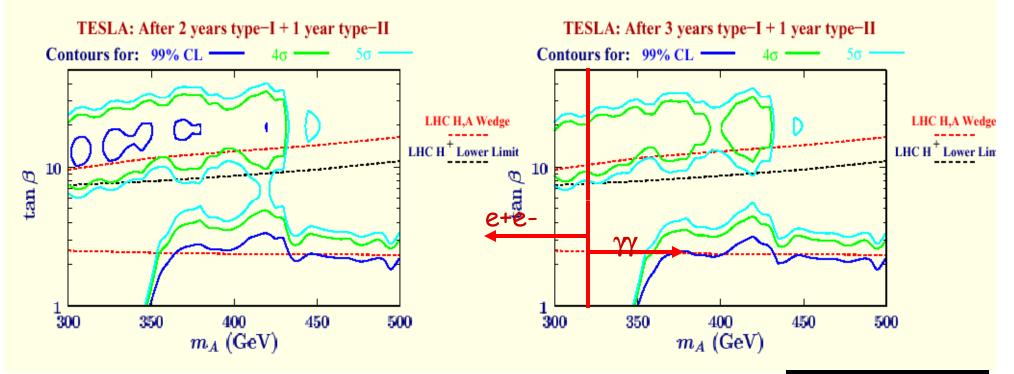

Higgs Self Coupling




Effective hhn coupling vs SM using STD (standard deviations) – mass 120, 150GeV PLC sensitive at lower energy than ee ILC

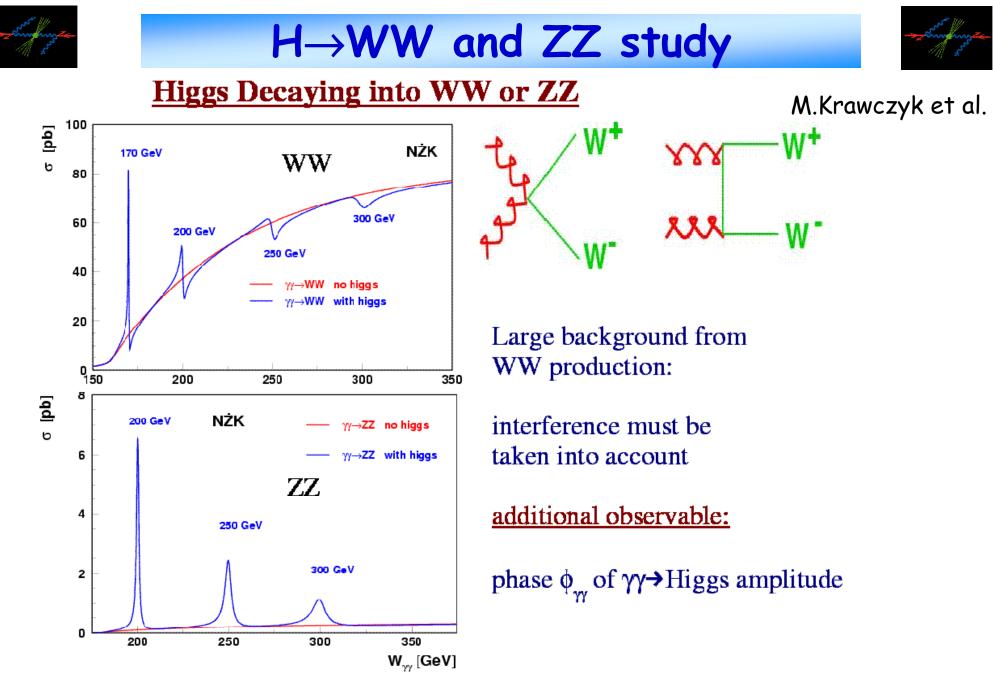




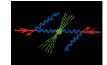


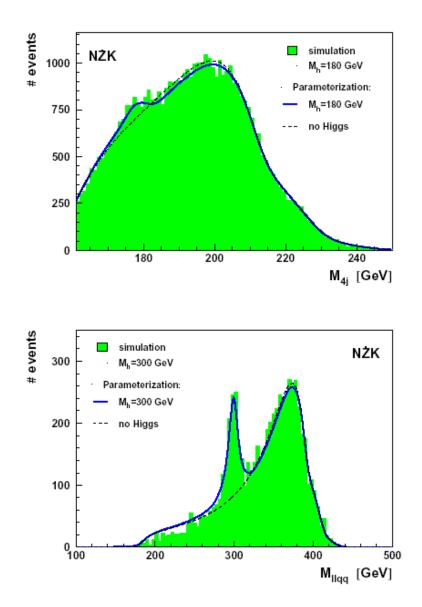
Measurement of $\Delta\sigma/\sigma$ to 10-20% (1 year running)

MSSM H/A Higgs Reach



US study D.Asner/J.Gunion (LCWS02)

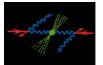

- Extends e+e- reach
- Need few years to close the LHC wedge


Study for a e+e- collider at 630 GeV

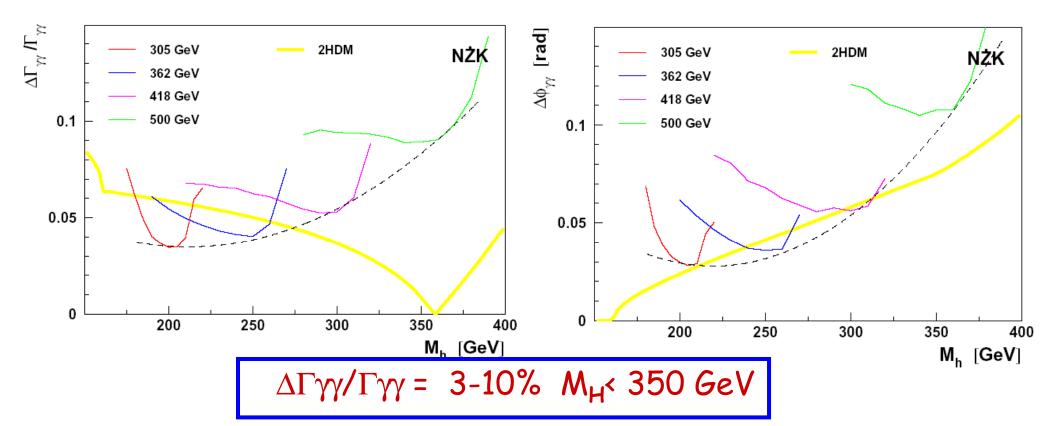
$H \rightarrow WW$ and ZZ study

 $\gamma\gamma \rightarrow WW$ for H=180 GeV

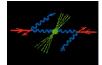
Similar analysis as for H→bb


Select events with

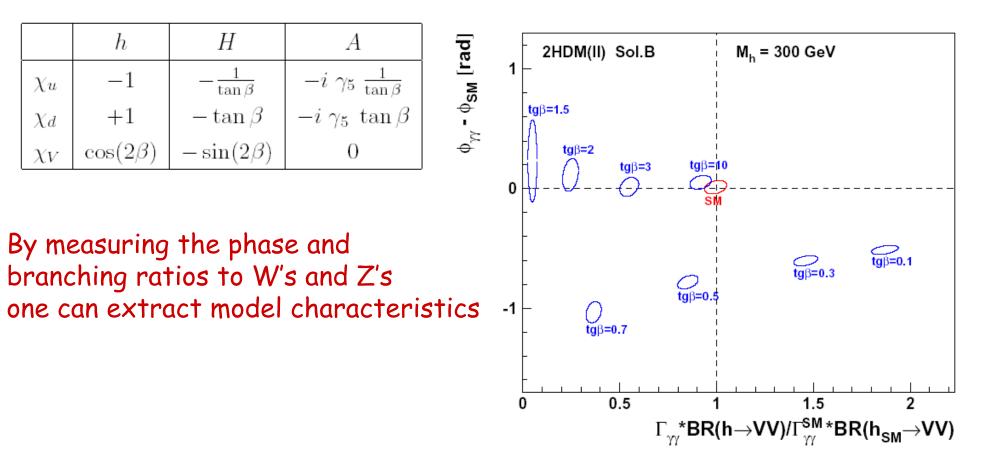
 $\begin{array}{l} W{+}W{-} \rightarrow 4 \text{ jets} \\ Z \ Z \ \rightarrow 2 \text{ leptons} + 2 \text{ jets} \end{array}$


 $\gamma\gamma \rightarrow ZZ$ for H=300 GeV

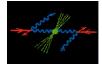
$H \rightarrow WW$ and ZZ study



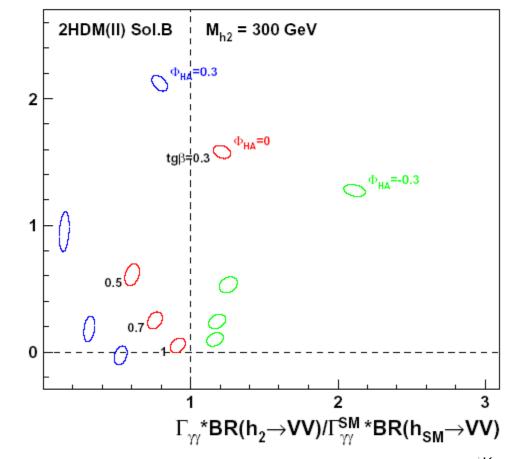
Statistical error on the Higgs width and phase from a combined ZZ and WW fit

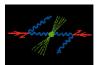


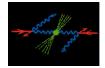
The yellow line shows the size of the deviations expected in the SM-like two higgs doublet model (2HDM=II) with an additional contribution due to the charged Higgs of mass 800 GeV.

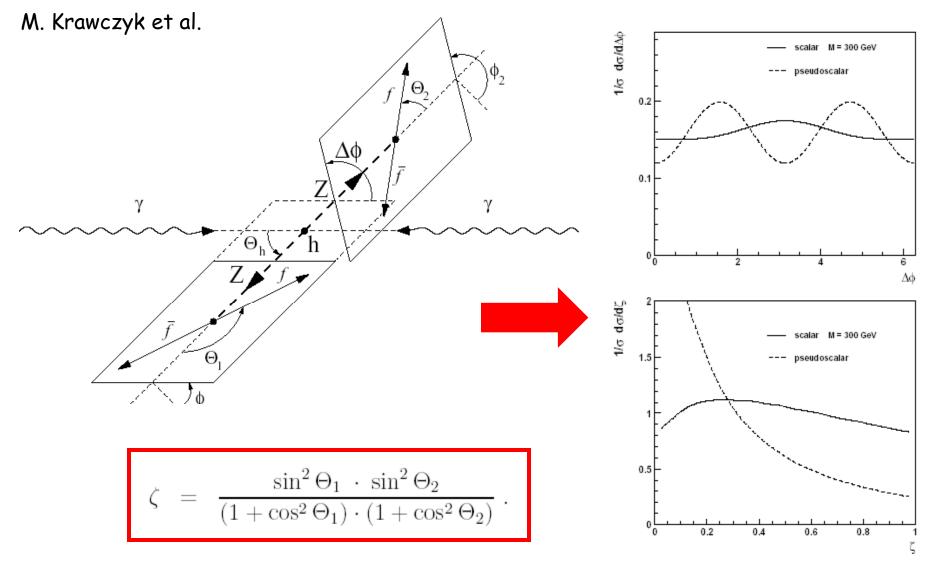

Determination of Couplings in 2HDM

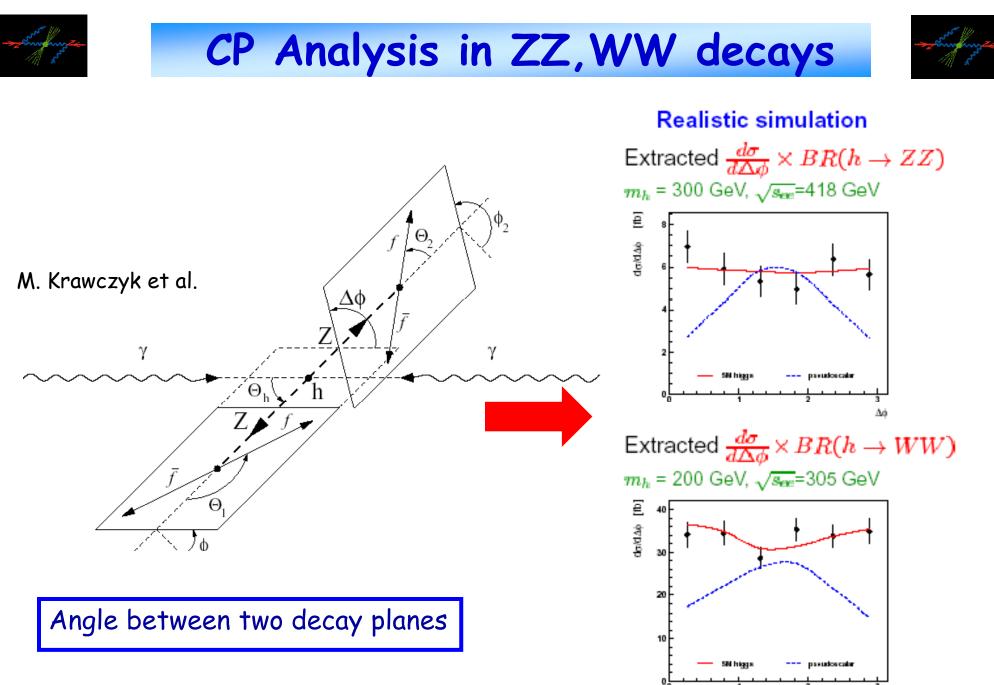
Deviations in two photon width and phase can appear if couplings are different from the SM ones Eg. SM-like 2HDM/Couplings to EW gauge bosons are different No CP violation in this model

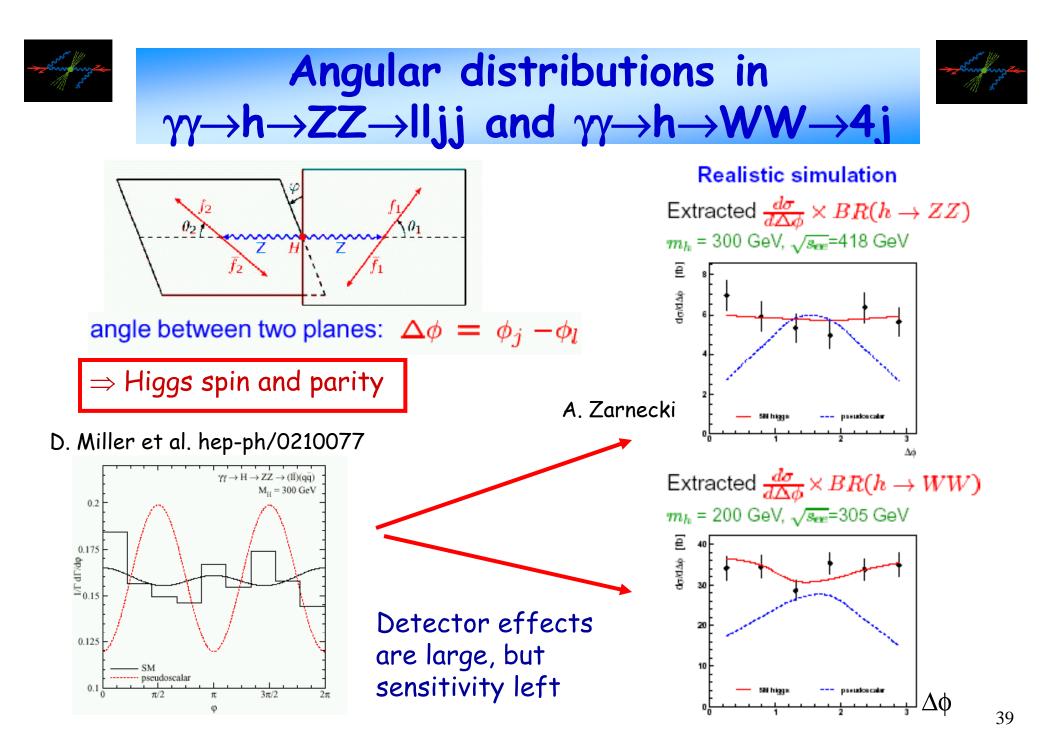



Determination of Couplings in 2HDM

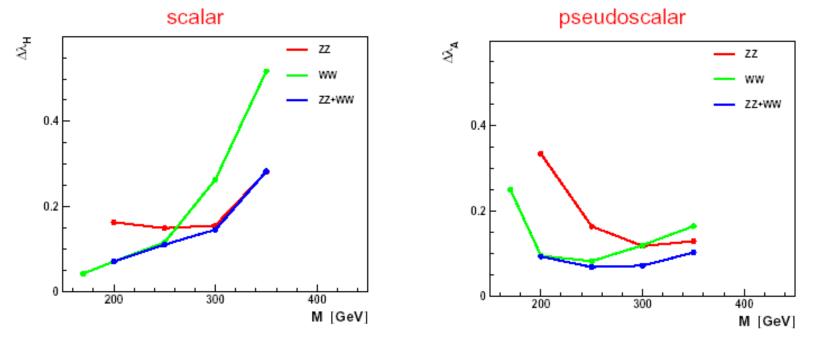

Deviations in two photon width and phase can appear if couplings are different from the SM ones Eq. SM-like 2HDM/Couplings to EW gauge bosons are different Allow for CP violation! $\phi_{\gamma\gamma}$ - $\phi_{\sf SM}$ [rad]


By measuring the phase and branching ratios to W's and Z's one can extract model characteristics

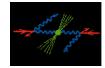



CP Analysis in ZZ, WW decays

 ζ : Ratio of the angular distributions expected for a scalar and pseudoscalar

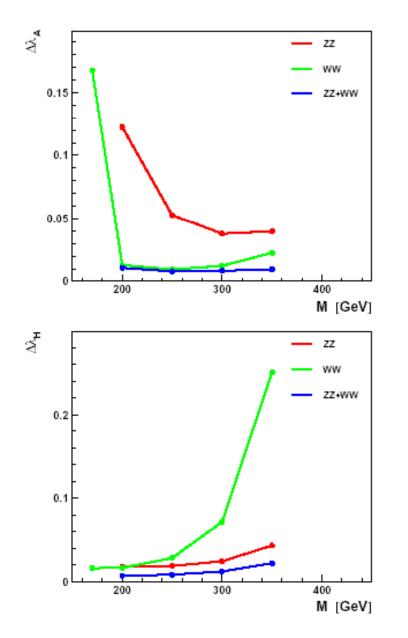


Generic model with CP violation

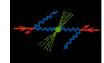

$$g_{\mathcal{H}ZZ} = ig \frac{M_Z}{\cos \theta_W} \left(\lambda_H \cdot g^{\mu\nu} + \lambda_A \cdot \varepsilon^{\mu\nu\rho\sigma} \frac{(p_1 + p_2)_\rho (p_1 - p_2)_\sigma}{M_Z^2} \right)$$
$$g_{\mathcal{H}WW} = ig M_W \left(\lambda_H \cdot g^{\mu\nu} + \lambda_A \cdot \varepsilon^{\mu\nu\rho\sigma} \frac{(p_1 + p_2)_\rho (p_1 - p_2)_\sigma}{M_W^2} \right)$$

Standard Model (scalar) couplings are reproduced for $\lambda_H = 1$ and $\lambda_A = 0$.

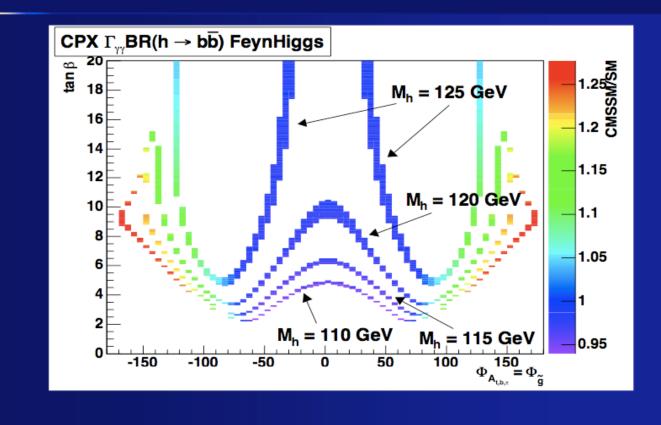
Pseudoscalar Higgs boson corresponds to $\lambda_H = 0$ and $\lambda_A = 1$. Combined measurement of angular correlations in the W^+W^- and ZZ-decay products Measurement error for Higgs-boson couplings to vector bosons:

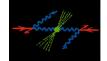


From $\Delta \phi$ and ζ measurements in ZZ and WW Higgs decays

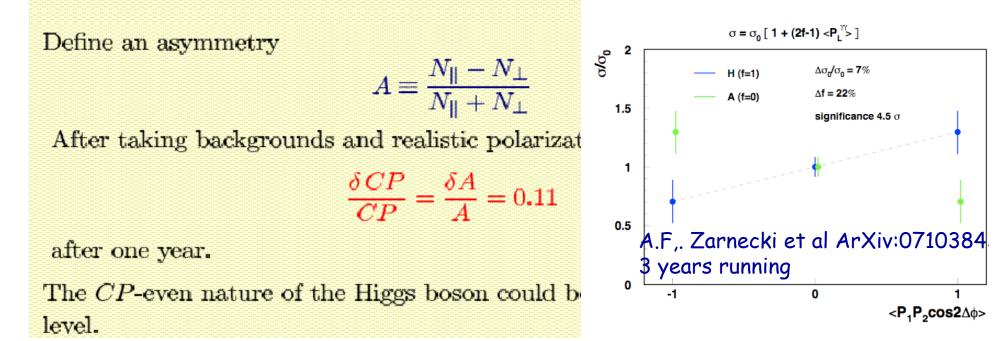

Assume 'new physics' is only in the anomalous couplings: ⇒ no significant contributions of heavy particles

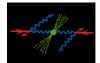
Use all information available (inv. mass, angular distr.)



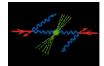


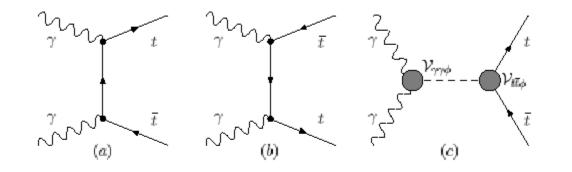
CPX scenario (max CP violation in CMSSM) studied for LHC, ILC, PLC (CLIC ?) by Heinemeyer, Velasco 2004


Linear polarized beams


If $\vec{\epsilon}_1$ and $\vec{\epsilon}_2$ are the photon polarization vectors (which are perpendicular to the beam), then

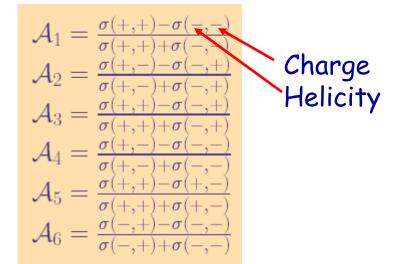
 $\vec{\epsilon}_i$ are parallel \longrightarrow produce CP-even only \longrightarrow

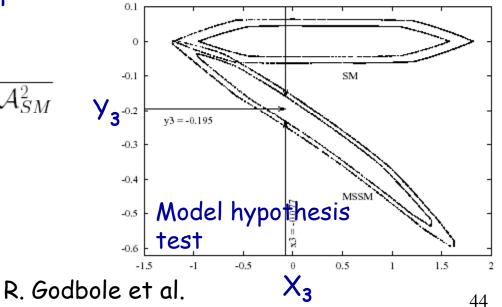

 $\vec{\epsilon}_i$ are perpendicular \longrightarrow produce CP-odd only $\rightarrow A$



Linear polarization to produced either H or A (or mixture)

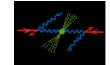
CP studies via $\gamma\gamma \rightarrow \phi \rightarrow tt$

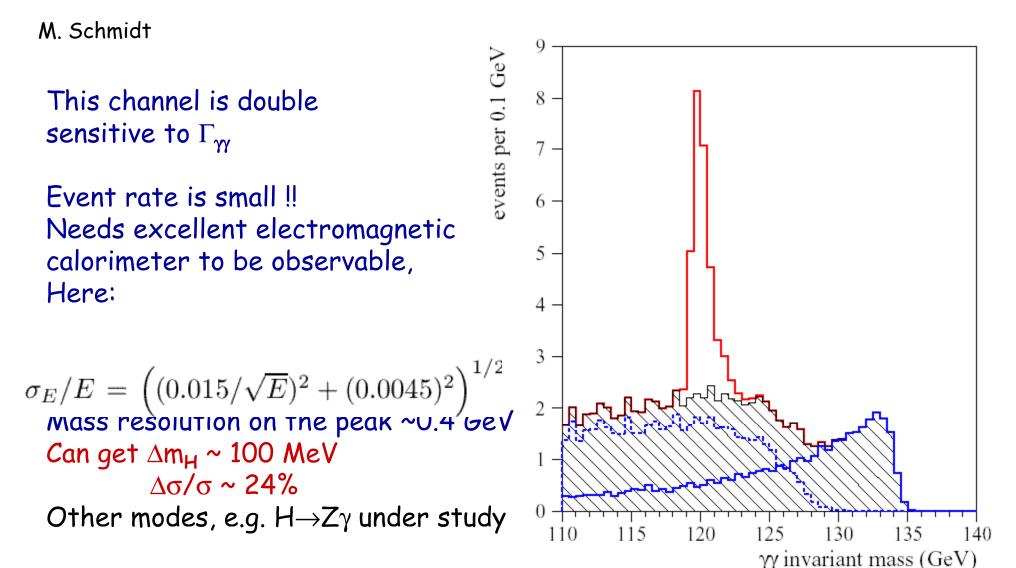


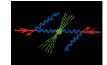

Construct combined asymmetries from initial photon polarization and decay lepton charge e.g. $\gamma\gamma \rightarrow tt \rightarrow Wbt \rightarrow l^+vbt$

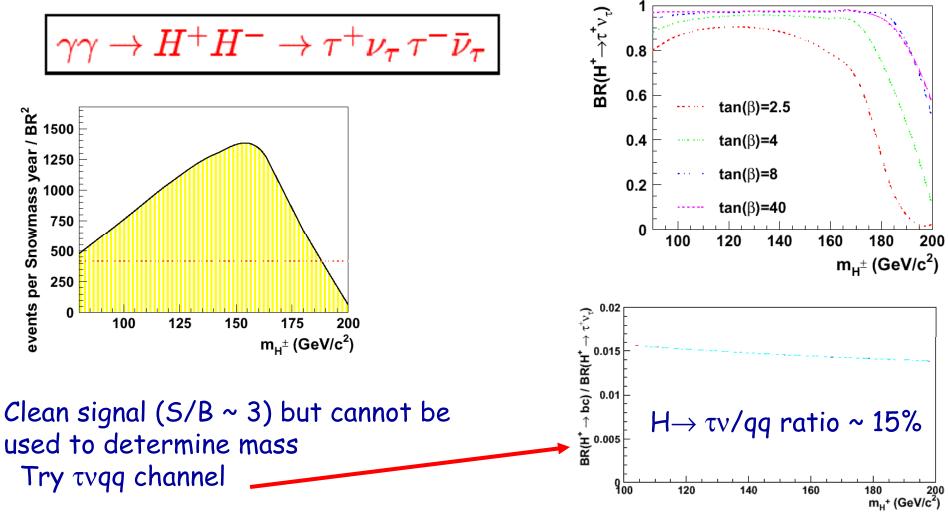
$$|\mathcal{A}(\{x_i, y_i\}) - \mathcal{A}_{SM}| \le \delta \mathcal{A}_{SM} = \frac{f}{\sqrt{\sigma_{SM}L}} \sqrt{1 + \mathcal{A}_{SM}^2}$$

$$\begin{split} m_{\phi} &= 500 GeV, \Gamma_{\phi} 1.9 GeV, \\ S_t &= 0.33, P_t = 0.15, \\ S_{\gamma} &= -1.3 - 1.2i, P_{\gamma} = -0.51 + 1.1i. \end{split}$$

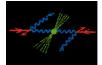



CP-odd and even form factors





Charged Higgs

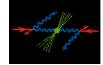

V. Martin

Cross section 20 times larger in $\gamma\gamma$ compared to e+e-

Next-to-MSSM Study

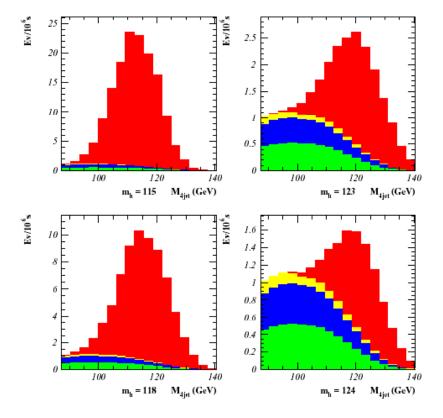
Going beyond the simplest model e.g. NMSSM: \Rightarrow 7 Higgs particles: 3 CP even (h1,h2,h3), 2CP odd (a1,a2) and 2 charged

Point Number	1	2	3	4	5	6
Bare Parameters						
λ	0.2872	0.2124	0.3373	0.3340	0.4744	0.5212
κ	0.5332	0.5647	0.5204	0.0574	0.0844	0.0010
$\tan \beta$	2.5	3.5	5.5	2.5	2.5	2.5
μ_{eff} (GeV)	200	200	200	200	200	200
A_{λ} (GeV)	100	0	50	500	500	500
A_{κ} (GeV)	0	0	0	0	0	0
CP-even Higgs Boson Masses and Couplings						
m_{h_1} (GeV)	115	119	123	76	85	51
Relative gg Production Rate	0.97	0.99	0.99	0.00	0.01	0.08
$BR(h_1 ightarrow b\overline{b})$	0.02	0.01	0.01	0.91	0.91	0.00
$BR(h_1 ightarrow au^+ au^-)$	0.00	0.00	0.00	0.08	0.08	0.00
$BR(h_1 ightarrow a_1 a_1)$	0.98	0.99	0.98	0.00	0.00	1.00
m_{h_2} (GeV)	516	626	594	118	124	130
Relative gg Production Rate	0.18	0.09	0.01	0.98	0.99	0.90
$BR(h_2 ightarrow b\overline{b})$	0.01	0.04	0.04	0.02	0.01	0.00
$BR(h_2 ightarrow au^+ au^-)$	0.00	0.01	0.00	0.00	0.00	0.00
$BR(h_2 ightarrow a_1 a_1)$	0.04	0.02	0.83	0.97	0.98	0.96
m_{h_3} (GeV)	745	1064	653	553	554	535
CP-odd Higgs Boson Masses and Couplings						
m_{a_1} (GeV)	56	7	35	41	59	7
Relative gg Production Rate	0.01	0.03	0.05	0.01	0.01	0.05
$BR(a_1 ightarrow b\overline{b})$	0.92	0.00	0.93	0.92	0.92	0.00
$BR(a_1 ightarrow au^+ au^-)$	0.08	0.94	0.07	0.07	0.08	0.90
m_{a_2} (GeV)	528	639	643	560	563	547
Charged Higgs Mass (GeV)	528	640	643	561	559	539
Most Visible Process No.	$2(h_1)$	$2(h_1)$	$8(h_1)$	$2(h_2)$	$8(h_2)$	$8(h_2)$
Significance at 300 fb^{-1}	0.48	0.26	0.55	0.62	0.53	0.16


gg → h/a → γγ;
 associated Wh/a or tth/a production with γγℓ[±] in the final state;
 associated tth/a production with h/a → bb;
 associated bbh/a production with h/a → τ⁺τ⁻;
 gg → h → ZZ^(*) → 4 leptons;
 gg → h → WW^(*) → ℓ⁺ℓ⁻νν̄;
 WW → h → τ⁺τ⁻;
 WW → h → WW^(*).

Some of these Higgses cannot be seen at the LHC, if decay $h{\rightarrow}a_1a_1{\rightarrow}bbbb$ large

Low significance at the highest lumi

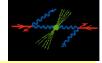


Scenario	m_h (GeV)	m_a (GeV)	$\sigma(\gamma\gamma \rightarrow h)$ (fb)	Acceptance	No. events / 10^6s
(1)	115	56	112	0.26	139
(3)	123	35	9.1	0.33	14.7
(4)	118	41	46	0.28	63
(5)	124	59	6.0	0.24	7.1

SIGNAL on top of BACKGROUND - 4 SCENARIOS

Asner et al.

Signals and background for Four of the difficult LHC scenarios

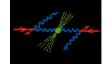

Study $h \rightarrow a_1 a_1 \rightarrow bbbb$

Clear signals confirming/discovering these low mass Higgses

Note e+e- \rightarrow Zh should see these without problems

Higgs Wrap-up

- Mass
 - ~ 100 MeV/ 1 year running
- Partial width $\Gamma(\gamma\gamma)$
 - 2-7% in bb channel (needs $H \rightarrow$ bb from e+e-)
 - 3-10% in WW,ZZ channel (needs BR from e+e-)
- Determination of the phase of the $\gamma\gamma \rightarrow$ Higgs amplitude
 - 3-10% in WW,ZZ channel
- CP analysis: many posibilities
 - $h \rightarrow ZZ,WW$ angular analysis
 - $h \rightarrow tt$ interference with QED background, lepton charge asymmetries
 - Linear polarization
- Rare decay modes
 - $H \rightarrow \gamma \gamma !$, $H \rightarrow \gamma Z$?
- Discovery reach for H,A
 - Up to 0.8 $\sqrt{s_{ee}}$ for $\sqrt{s_{ee}} \sim 800 \text{ GeV}$

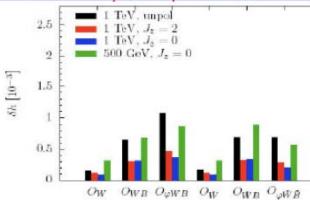

15% in e+e-~e+e-Unique?

More handles than in e+e-Clean tests!

Difficult in e+e-

e+e-:√s/2- 50 GeV

Anomalous couplings

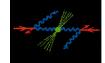

A. Manteuffel

Anomalous Couplings in yy->WW

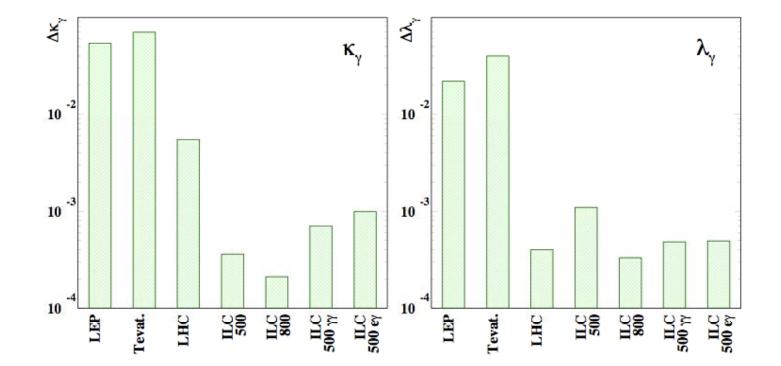
 $\begin{aligned} & \mathsf{Gauge and gauge-Higgs anomalous couplings} \\ & \mathscr{L}_{z} = \frac{1}{v^{2}} \left(h_{W} \mathcal{O}_{W} + h_{\bar{W}} \mathcal{O}_{\bar{W}} + h_{\varphi W} \mathcal{O}_{\varphi W} + h_{\varphi B} \mathcal{O}_{\varphi B} + h_{\varphi \bar{B}} \mathcal{O}_{\varphi \bar{B}} \right. \\ & + h_{W \bar{B}} \mathcal{O}_{W \bar{B}} + h_{\bar{W} \bar{B}} \mathcal{O}_{W \bar{B}} + h_{\bar{\psi}^{(1)}} \mathcal{O}_{\bar{\psi}^{(1)}}^{(1)} + h_{\bar{\psi}^{(3)}}^{(3)} \mathcal{O}_{\bar{\psi}^{(3)}}^{(3)} \right), \\ & \mathcal{O}_{W} = \epsilon_{ijk} W_{\mu}^{i\nu} W_{\nu}^{j\lambda} W_{\lambda}^{k\mu}, \qquad \mathcal{O}_{\bar{W}} = \epsilon_{ijk} \tilde{W}_{\mu}^{i\nu} W_{\nu}^{j\lambda} W_{\lambda}^{k\mu}, \\ & \mathcal{O}_{\varphi W} = \frac{1}{2} \left(\varphi^{\dagger} \varphi \right) W_{\mu\nu}^{i} W^{i\mu\nu}, \qquad \mathcal{O}_{\varphi \bar{W}} = \left(\varphi^{\dagger} \varphi \right) \tilde{W}_{\mu\nu}^{i} W^{i\mu\nu}, \\ & \mathcal{O}_{\varphi B} = \frac{1}{2} \left(\varphi^{\dagger} \varphi \right) B_{\mu\nu} B^{\mu\nu}, \qquad \mathcal{O}_{\varphi \bar{B}} = \left(\varphi^{\dagger} \varphi \right) \tilde{B}_{\mu\nu} B^{\mu\nu}, \\ & \mathcal{O}_{W \bar{B}} = \left(\varphi^{\dagger} \tau^{i} \varphi \right) \tilde{W}_{\mu\nu}^{i} B^{\mu\nu}, \qquad \mathcal{O}_{W \bar{B}} = \left(\varphi^{\dagger} \tau^{i} \varphi \right) \tilde{W}_{\mu\nu}^{i} B^{\mu\nu}, \\ & \mathcal{O}_{\bar{\psi}}^{(1)} = \left(\varphi^{\dagger} \varphi \right) \left(\mathcal{D}_{\mu} \varphi \right)^{\dagger} \left(\mathcal{D}^{\mu} \varphi \right), \qquad \mathcal{O}_{\bar{\psi}}^{(3)} = \left(\varphi^{\dagger} \mathcal{D}_{\mu} \varphi \right)^{\dagger} \left(\varphi^{\dagger} \mathcal{D}^{\mu} \varphi \right) \end{aligned}$

Sensitivity with polarized beams

Comparison of Sensitivities



	LEP & SLD (*)	$ee \rightarrow WW(*)$	$\gamma\gamma \rightarrow WW$ unpolarised	$\begin{vmatrix} \gamma \gamma \rightarrow WW \\ J_2 = 0 \end{vmatrix}$
	h [10 ⁻³]	$\delta h_i [10^{-3}]$	δh , [10 ⁻³]	δh [10 ⁻³]
hw	-69 ± 39	0.3	0.6	0.3
hwa	-0.06 ± 0.79	0.3	1.6	0.7
h.we	×	×	2.2	0.9
$h_{\varphi}^{(3)}$	-1.15 ± 2.39	36.4	×	×
h _w	68±81	0.3	0.7	0.3
h _{WB}	33 ± 84	2.2	2.0	0.9
hewa	×	×	2.0	0.6


See next talk!

K. Moenig et al. arXiv:physics/0601204

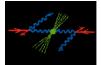
Sensitivity to anomalous $WW\gamma$ for different machines

Triple Gauge Couplings

Study
$$\gamma\gamma \rightarrow WW e\gamma \rightarrow W\nu$$

- change

Sekaric, Moenig Bosovic, Anipko


Measure the gauge couplings with high precision

		real	<i>E_{ey}</i> = 450 GeV	E_{y} = 400 GeV	<i>E_{ee}</i> = 500 GeV
	W±	/parasitic	$\int L \Delta t = 110 \text{fb}^{-1}$	<i>∫L∆t</i> =110 fb ⁻¹	<i>∫L∆†</i> =500 fb ⁻¹
γ		ΔL	0.1%	0.1%	
	W±	Δκ _γ · 10 -4	9.9	6.7	3.1
γ	W [∓]	Δλ _γ · 10 -4	2.6	(6.0) prelim	4.3

sensitivity ~ proportional to the momentum of the particles involved in the
triple gauge boson vertex

Analysis includes detector simulation/3D fits/azimuthal decay angle Studies starting for quartic couplings in $\gamma\gamma \rightarrow WW$ and $\gamma\gamma \rightarrow WWZ$ I Marfin Use of optimal variables F. Nagel et al.

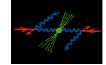
Anomalous Top Couplings

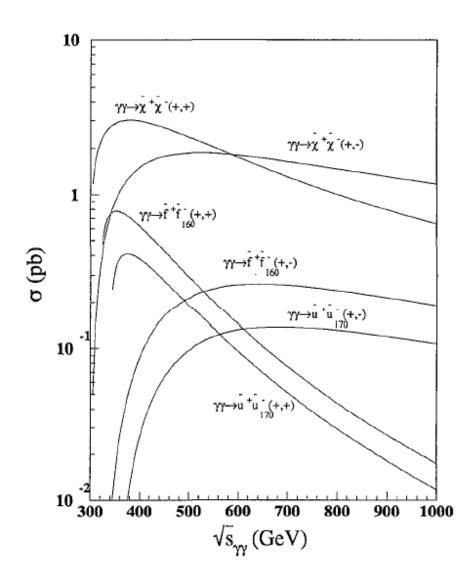
Search for deviations in the top couplings

		f_2^L	$f_2^{oldsymbol{R}}$
	Tevatron $(\Delta_{ m sys.} \sim 10\%)$	$-0.18 \div +0.55$	$-0.24 \div +0.25$
eγ gives good	LHC ($\Delta_{ m sys.}\sim 5\%$)	$-0.052 \div +0.097$	$-0.12 \div +0.13$
Sensitivity	$e^+e^-~(\sqrt{s}_{ee}=0.5~{ m TeV})$	$-0.025 \div +0.025$	$-0.2 \div +0.2$
(1 year running)	$\gamma e ~(\sqrt{s_{ee}}=0.5~{ m TeV})$	$-0.045 \div +0.045$	$-0.045 \div +0.045$
	$\gamma e \left(\sqrt{s_{ee}} = 2 \text{ TeV} \right)$	$-0.008 \div +0.008$	$-0.016 \div +0.016$
Boos et al.			

The γe collider is more than competitive!

 $f_2^L \& f_2^R$ anomalous terms in the eff. Langrangian, $\propto 1/\Lambda$ (new physics scale)

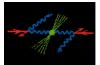

 $\gamma\gamma \rightarrow tt$ Electric dipole moment Godbole et al. Beam energy: 250 GeV. L=20 fb⁻¹. Cut-off angle 30 deg.

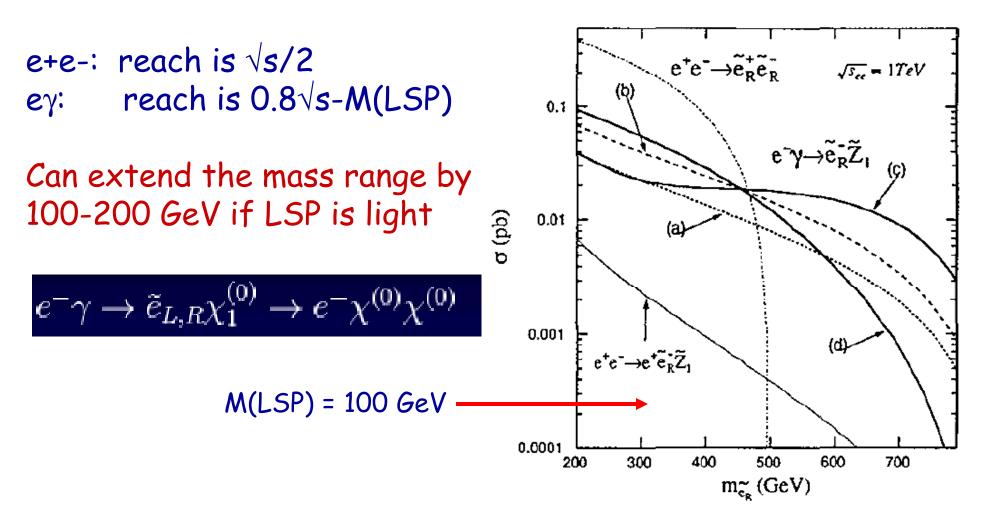

No. of events	Charge asymmetry	Limit on dipole Moment
Ideal: 533	-0.031	$6.5 \ge 10^{-17} \text{ ecm}$
Zarnecki: 238	-0.023	$1.3 \ {\rm X} \ 10^{-16} \ {\rm ecm}$

Limits will better by factor 5 for 500 fb⁻¹.

Supersymmetry

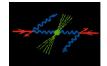
Cross sections for SUSY particles at a LC


Note: couplings only to photon


E.g. charginos at 150 GeV

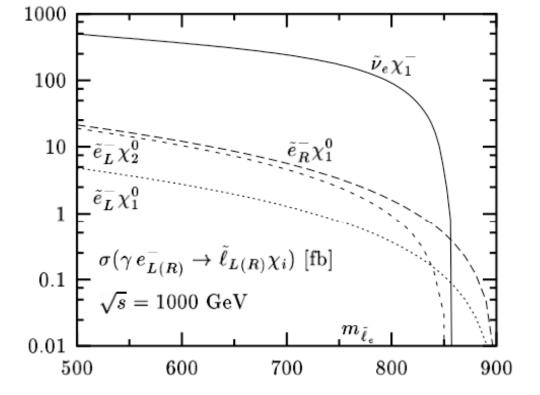
	$\int \mathcal{L}_{th} \; (\mathrm{fb}^{-1}/10^7)$	s) σ (fb)	Event yield
Spin-0	30	3000	90,000
Spin-2	5	1000	$5,\!000$
e^+e^-	160	300	48,000

Two times as many events in $\gamma\gamma!$



Klasen, Berge

Extend reach for sleptons

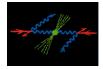


e+e-: reach is √s/2 eγ: reach is 0.9√s-M(LSP)

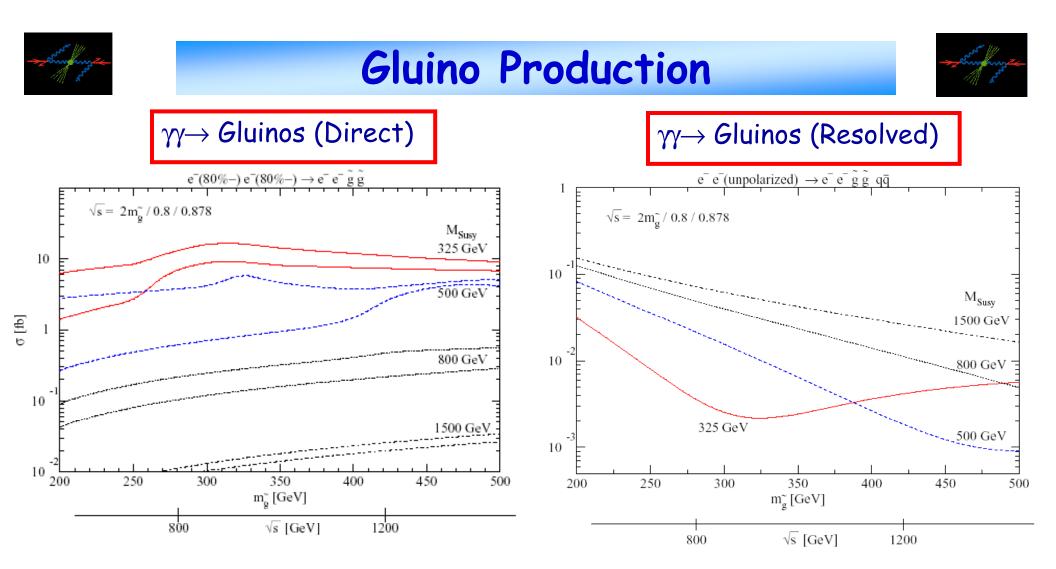
Can extend the mass range by 100-200 GeV if LSP is light

$$e^-\gamma \to \tilde{e}_{L,R}\chi_1^{(0)} \to e^-\chi^{(0)}\chi^{(0)}$$

M(LSP) = 100 GeV

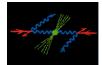


Datta, Djouadi, Muhlleitner

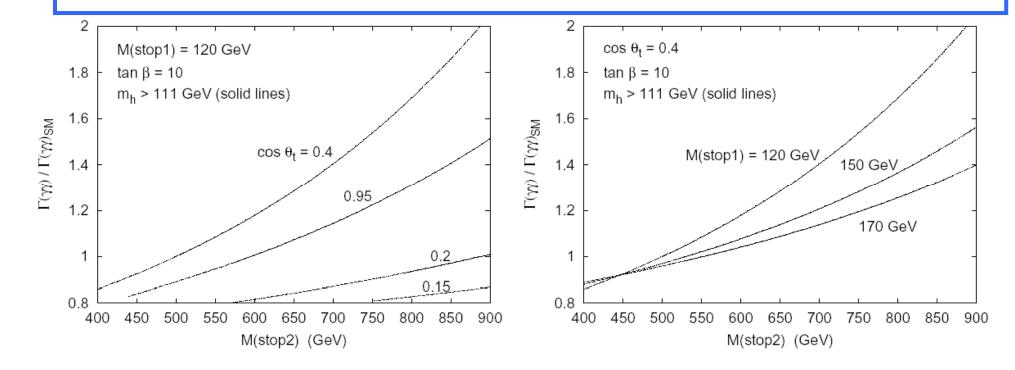

Klasen, Berge

Gluino production

Berge, Klasen Υ····--• γw , 6660 8 Yww Gluinos couple only strongly! Suppressed in e+e- and cannot ite another the second `inno ã YVVVV Ynni YAAN be measured γ~~•---•660 **ε** _ℓΩ ĝ γvvv Ynn Can be produced at •the loop level in direct $\gamma\gamma$ collisions ¥rrrrrr ĝ *∳666* 8 •the tree level in resolved $\gamma\gamma$ collisions γ5⁵ `**∳**₩₩ Ĩ m_{SUSY} Dependence of Direct/Resolved Contributions 10¢66666€ Ĩ $\sqrt{s_{\gamma\gamma}} = 500 \text{ GeV}$ $\tilde{m_a} = 200 \text{ GeV}$ • 6666666 Direct+Resolved 1 00000 ----- Direct Resolved (qq+gg) 10----- Resolved (gg only) σ [fb] 10 's ∕ooooo**,**€666666 **8** g receied 10 an g = squark mass 10 400600 800 1000 1200 1400 m_{SUSY} [GeV] 57

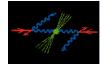


- between 20 events for squarks of 800 GeV and 2000 events per year for light squarks of 325 GeV
- about 20 events per year for heavy squarks (1500 GeV) by resolved contribution


Can PLC add to LHC?

Constrain mass of stop-2

Assume M(stop1) known and the stop mixing angle known from e+e-Assume M(stop2)-M(stop1) large \Rightarrow Constrain M(stop2) from two photon partial width (yes the Higgs again!)



In favorable scenarios: can reach precision of $\Delta M(stop2) \sim 20 \text{ GeV}$

Determination of $Tan\beta$

 $\mathbf{2}$

Methods to determine $\tan\beta$ for large values beyond $\tan\beta=10$

(a) charginos / neutralinos	⇒	$\cos 2eta$ slope $\sim 1/ an$ insensitive	$h^3 \beta$ Choi et al
(b) τ polarization etc	\Rightarrow	$\sim 10\%$	Boos et al
(c) $bbH/A, H/A$ widths etc	\Rightarrow	$\mathrm{LHC}/300 f b^{-1}~: 12$ to 4	% Gunion et al
	\Rightarrow	$LC/2,000fb^{-1}:5$ to 3%	M_0 at $M_A = 200 \text{GeV}$
(d) LHC sim $H/A \rightarrow \tau \tau$	\Rightarrow	$30 f b^{-1} \sim 20\%$	Kinnunen et al
(e) $\gamma \gamma \to H/A \to b\bar{b}$	⇒	$\sim 4~{\rm to}~10\%~{\rm [estimate]}$	see: Niezurawski et al and Velasco et al

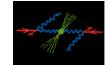
Additional methods strongly required for precision analysis of $\tan\beta$

S.Y.Choi,J.Kalinowski,J.S.Lee, M.M. Muhlleitner, M.Spira,P.M.Zerwas hep-ph/0404119

Tau fusion -> tan beta

New method: Tauon fusion of Higgs h/H/A/ at $\gamma\gamma$ collider:

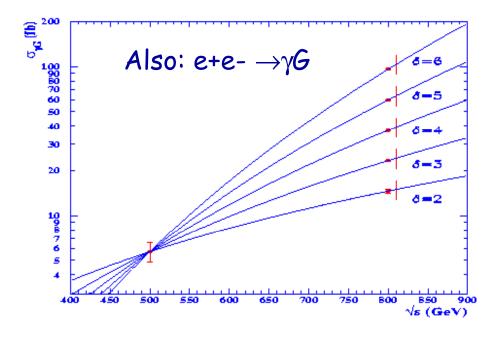
couplings: for large $\tan\beta$


 $A\tau\tau = \tan\beta, H\tau\tau \simeq \tan\beta$ for A, H heavy $h\tau\tau \simeq \tan\beta$ A light

Higgs decays: $h/H/A \rightarrow bb$ at 90% level \Rightarrow SPS1b

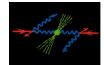
In analysis tan beta 10-50 and mass 100 -500 GeV $\Delta \tan \beta \sim 0.9$ -1.3

```
lum 100 (200) fb<sup>-1</sup> for energy 500 (1000) GeV
(background included)
```



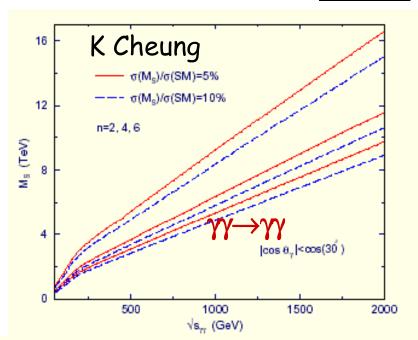
Extra Dimensions at an e+eand photon collider

Example: Deviations from SM due to virtual Kaluza Klein Graviton effects



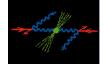
Exchanging (towers of) gravitons between SM particles will generate effective contact interactions, carrying spin 2

These may lead to substantial deviations from the predictions of the SM for cross sections and angular polarizations

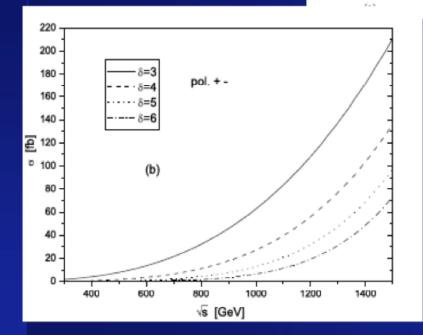

Extra Dimensions

Why is gravity weak? Has more than 4 dimensions to spread out Extra dimensions small, μm to TeV⁻¹ scale

 \Rightarrow Deviations in SM cross sections


ADD: Planck scale in TeV range Photon collider has a large sensitivity

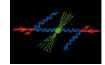
	Reaction	$M_{m{S}}$ Reach (TeV units) for $L=100{ m fb}^{-1}$	
1	$e^+e^- ightarrow f\overline{f}$	$6.5\sqrt{s}$	T.Rizzo
	$e^+e^- ightarrow e^+e^-$	$6.2\sqrt{s}$	
	$e^-e^- ightarrow e^-e^-$	$6.0\sqrt{s}$	
	$pp ightarrow \ell^+ \ell^-$ (LHC)	5.3	
	$pp \rightarrow jj$ (LHC)	9.0	
WW production:	$pp \rightarrow \gamma \gamma ~(LHC)$	5.4	Also studies
-Large statistics	$\gamma\gamma ightarrow\ell^+\ell^-/t\overline{t}/jj$	$4\sqrt{s}$	on Radions in
–		$4-5\sqrt{s}$	RS-models
-Many observable	$\gamma\gamma ightarrow\gamma\gamma/ZZ\ \gamma\gamma ightarrow W^+W^-$	$11\sqrt{s}$	


Extra Dimensions

Using luminosity measurements process to detect KK graviton in ADD at PLC ; Zhou,Ma,Han,Zhang hep-ph/07081195

Contractions.

• $\gamma \gamma \rightarrow e^+e^-G_n$



For J=2 large cross section Polarization efficiency $P_{\gamma}=(N_{+}-N_{-})/(.+.)$

Fund. scale M_s=1.5 TeV

Extra dimensions

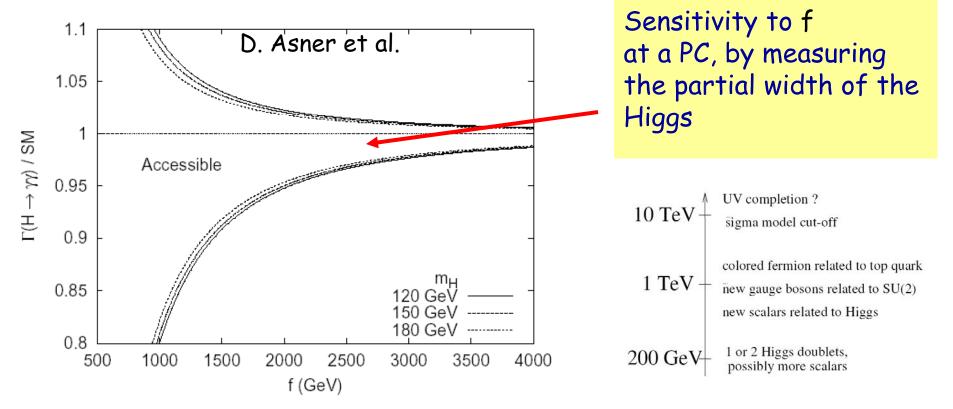
Signal and background

Table 1: Total cross sections for the process $\gamma\gamma \rightarrow e^+e^-G_n$, with and without photon polarization. M_S is set to be 1 TeV, the polarization efficiency $P_{\gamma} = 0.9$, and the cross sections are in *fb*.

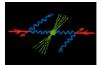
\sqrt{s} [GeV]		$\delta = 3$	$\delta = 4$	$\delta = 5$	$\delta = 6$
	unpol.	46.46	13.92	4.692	1.700
500	+ -	60.01	19.35	6.853	2.576
	++	32.91	8.493	2.532	0.821
	unpol.	371.7	222.7	150.1	108.8
1000	+ -	480.8	309.6	219.3	164.9
	++	262.6	135.8	80.93	52.75

Full bakground simulation

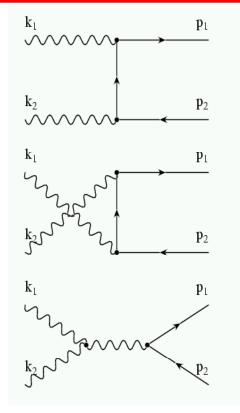
We conclude that by adopting an unpolarized $\gamma\gamma$ collision machine with $\sqrt{s} = 1$ TeV in the case of $\delta = 3$ and $\mathcal{L} = 100 f b^{-1}$, the graviton signal can be detected when $M_{\rm S} \leq 2.67$ TeV, while in the case of $\sqrt{s} = 500$ GeV, the graviton signal can be detected only when $M_{\rm S} \leq 1.40$ TeV. If we adopt a $\gamma\gamma$ collider machine in +- polarized photon collision mode, the detecting upper limits on the fundamental scale can be improved up to 2.79 TeV when $\sqrt{s} = 1$ TeV, and 1.44 TeV when $\sqrt{s} = 0.5$ TeV.


Little Higgs Model

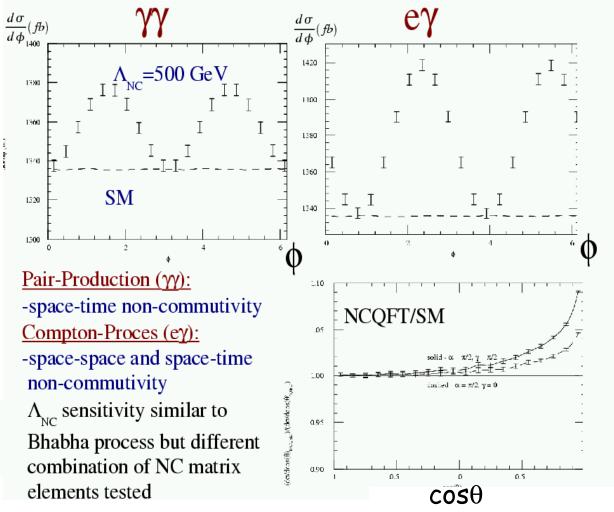
Another alternative to SUSY:


Stabelizing the Higgs with new weakly coupled fermions and Gauge bosons Expect 'new top' quark around 1 TeV, and new W,Z at somewhat higher masses

Littlest Higgs model: symmetry broken due to vacuum condensate f $\sim \Lambda/4\pi$

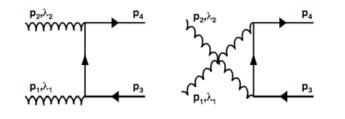


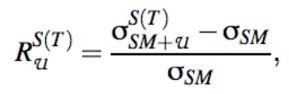
Non-commutative theories



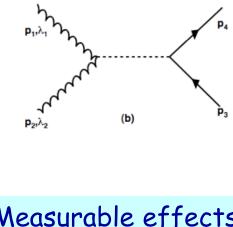
Breakdown in QED due to preferred direction in space: azimuthal effects

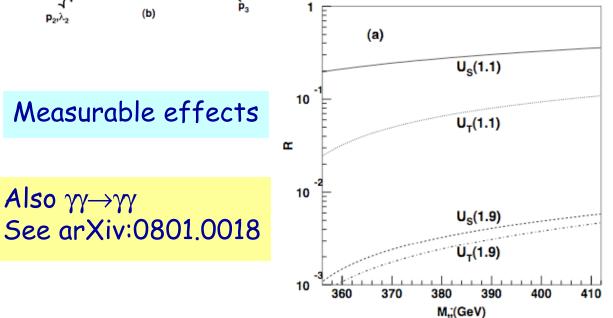

this study: $p_T > 10 \text{ GeV}, 10^{\circ} < \theta < 170^{\circ}, L_{ee} = 500 \text{ fb}^{-1}$

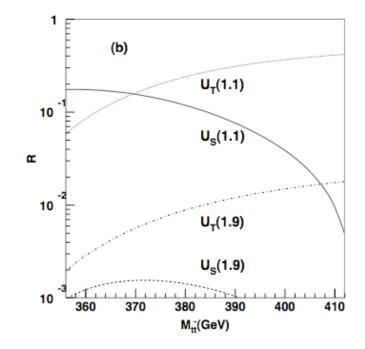

J. Hewett et al



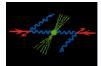
Unparticles



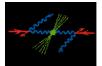

(a)



arXiv:0802.0236


Effect of virtual unparticle contribution to the $\gamma\gamma \rightarrow$ tt cross section

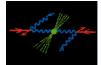
Conclusions

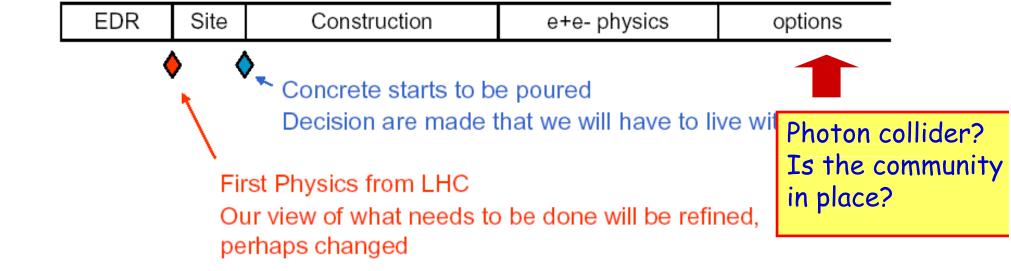


- Many detailed studies on the physics case for the photon collider
- R&D for a photon collider & detectors \Rightarrow V. Telnov/J. Gronberg
- Detail results on physics
 - QCD studies on the structure of the photon and $\sigma(\gamma\gamma)_{tot}$
 - The light Higgs results confirmed and extended $\rightarrow \Delta \Gamma_{\gamma\gamma} / \Gamma_{\gamma\gamma} \sim 2\%$
 - Higgs channels in WW,ZZ studied $\rightarrow \Delta \Gamma_{\gamma\gamma} / \Gamma_{\gamma\gamma} \sim 3-10\%$
 - H/A study confirms reach for high masses, beyond e+e-
 - Potential for CP, Higgs spin etc \rightarrow studies starting
 - Detailed study of the TGCs $\rightarrow\lambda$ measurement competitive with e+e-
 - Excellent sensitivity to SUSY and Extra Dimensions/alternative theories

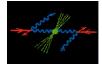
A photon collider is an excellent machine for physics
 It is strongly coupled to the faith of ILC/CLIC and hence >2020

Some of its program can be probably be explored at the LHC with two-photon physics studies

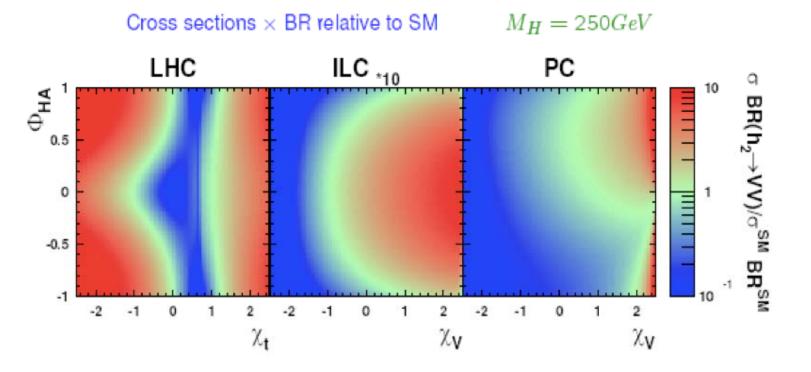


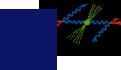

Backup

Timeline for ILC options?

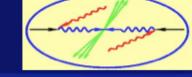

Year: 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

We need to be ready to make decisions for the baseline machine to maximize it's physics potential for the long term.


J. Gronberg LCWS07



$\mathsf{LHC}\oplus\mathsf{ILC}\oplus\mathsf{PC}$


Sensitivity of LHC, ILC and Photon Collider measurements to CP-violating mixing phase Φ_{HA}

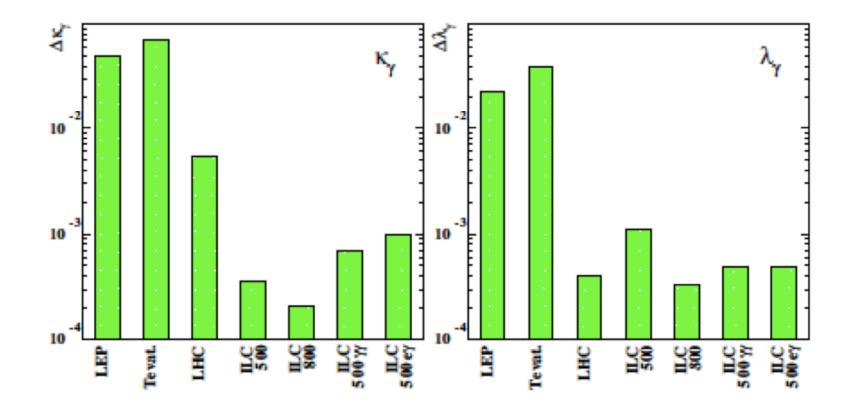
PLC: Photon Linear Collider $\gamma \gamma$ and e γ

- Resonance production of C=+ states (eg. Higgs) Ginzburg et al
- Higher mass reach
- Polarised beams CP filter Gunion, Grzadkowski, Hagiwara, Godbole, Zarnecki
- Η γ γ coupling sensitivity to charged particles in theory (nondecoupling)
 Ginzburg et al.., Gunion..
- Direct production of charged scalars, fermions and vectors higher cross section
 Kanemura, Moenig, Belanger
- Pair production of neutral particles (eg. light-on-light) via loops

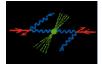
Jikia, Gounaris, Velasco

Spira, Zerwas

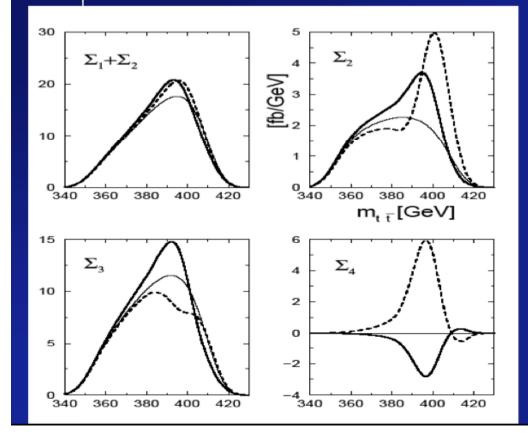
 Study of hadronic interaction of the photon Godbole, Pancheri; MK Brodsky, deRoeck, Zerwas

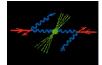


Coupling of Gauge Bosons at LHC, ILC, PLC

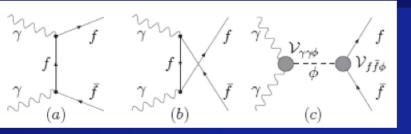

•Fermion pair production at 500 GeV and the Z pole (GigaZ)

•Coupling among gauge bosons anomalous couplings (V_mu nu and dual)


$$+ i\tilde{\kappa}_{\rm V}W^-_{\mu}W^+_{\nu}\tilde{V}_{\mu\nu} + i\frac{\tilde{\lambda}_{\rm V}}{m_{\rm W}^2}W^-_{\lambda\mu}W^+_{\mu\nu}\tilde{V}_{\nu\lambda}]$$



CP-even, CP-odd states in $\gamma \gamma \rightarrow t t$ Asakawa, Hagiwara.. 2000-


Scalar (dashed) Pseudoscalar (thick) Mass – 400 GeV

Probing the CP-violating Higgs contribution in $\gamma \gamma \rightarrow$ ff; Godbole, Kraml, Rindani, Singh – Phys. Rev. D (2006)

 For f = top, tau
 Using fermion polarization to construct various asymmetries

Both for CP conserving and CP violating case
 Model independent analysis and in addition
 CPX scenario (MSSM) – for light Higgs numerical analysis

$$\phi f \bar{f} : \frac{-ig m_f}{2 M_W} (v_f + ia_f \gamma_5)$$

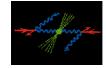
$$\phi VV : \frac{ig M_V^2}{M_W} \left(A_V g_{\mu\nu} + B_V \frac{p_\mu p_\nu}{M_Z^2} + i C_V \epsilon_{\mu\nu\rho\sigma} \frac{p^\rho q^\sigma}{M_Z^2} \right)$$

$$(1)$$

$$(2)$$

ff democratic CP-even and CP-odd coupling

In contrast to VV case – typically A_V dominates


Тор

Single top production

Rare top decays in tt events

> **ILC luminosity range** 1 fb $\Leftrightarrow 10^2 - 10^3$ events ($\mathcal{L} = 100 - 1000$ fb⁻¹)

FONO	A. Hoang, Florence,Sept.07						
FCNC's	-), hep-ph/0409351 a, hep-ph/0409342		
	$\sqrt{s} = 500 \; {\rm GeV}$	SM	2HDM-III	MSSM	TC2		
°*	$\sigma(\gamma\gamma \to t\bar{c})[{\rm fb}]$	$O(10^{-8})$	$O(10^{-1})$	$O(10^{-1})$	$\mathcal{O}(10)$		
) Z,y	$\sigma(e\gamma \to et\bar{c})[{\rm fb}]$	$O(10^{-9})$	$O(10^{-2})$	$O(10^{-2})$	$\mathcal{O}(1)$		
	$\sigma(e^+e^- \to t\bar{c})$ [fb]	$O(10^{-10})$	$\mathcal{O}(10^{-3})$	$\mathcal{O}(10^{-2})$	$O(10^{-1})$		
	$Br(t \rightarrow cg)$	$O(10^{-11})$	$\mathcal{O}(10^{-5})$	$\mathcal{O}(10^{-5})$	$O(10^{-4})$		
_**	$Br(t \rightarrow cZ)$	$O(10^{-13})$	$\mathcal{O}(10^{-6})$	$\mathcal{O}(10^{-7})$	$O(10^{-4})$		
	$Br(t ightarrow c\gamma)$	$O(10^{-13})$	$\mathcal{O}(10^{-7})$	$\mathcal{O}(10^{-7})$	$\mathcal{O}(10^{-6})$		
The The	$Br(t \rightarrow cH)$	< 10 ⁻¹³	$\mathcal{O}(10^{-3})$	$O(10^{-4})$	$O(10^{-1})$		
z î							

Any signal clear indication for new physics!

production more sensitive than decay (larger phase space)

beam polarization improves sensitivity for production

3σ discovery limits	Aguilar-Saavedra, hep-ph/0102197				
	LHC	ILC	ILC+		
$Br(t \to Zc) (\gamma_{\mu})$	3.6×10^{-5}	1.9×10^{-4}	$1.9 imes10^{-4}$		
$Br(t \rightarrow Zc) (\sigma_{\mu\nu})$	3.6×10^{-5}		$7.2 imes 10^{-6}$		
$Br(t \rightarrow \gamma c)$	1.2×10^{-5}	1.0×10^{-5}	$3.8 imes 10^{-6}$		

Corresponding to one year of running time:
LHC : 100 fb-1
ILC : 300 fb ⁻ 1, √s=500 GeV, no beam pol
ILC+: ",P(e ⁻)=+0.8, P(e ⁺)=-0.6

WHAT PLC CAN AND CANNOT DO (TESLA TDR'2001)

Gamma-Gamma Planners' (GGP) meeting in Kazimierz, Sept,7, 2005 (PLC2005), - based on the notes by David J. Miller

Present: V.Telnov, A.Finch, M.Krawczyk, J.Dainton, S. Maxfield, F.Kapusta, I. Ginzburg, P.M.Zerwas, F.Zarnecki, P.Pniez, K.Moenig, J.Gronberg, D.J.Miller

The $\gamma \gamma$ and $e\gamma$ upgrade options are not part of the baseline ILC design. If provision for the PLC option is to be included in the Reference Design Report at the end of 2006, the list of issues need to be tackled and convincing arguments given before the middle of 2006, on

- Optical Cavity
- Beam Dump
- Luminosity maintenance
- Crossing Angle
- Backgrounds
- Physics

The list of processes whose study will justify the PLC option needs to be reviewed. Some vital analyses are still missing (http://photon2005.fuw.edu.pl)

A need for PLC?

Higgs physics at PLC

- Precision measurements of the light Higgs boson production (->bb) and distinguishing SM-like scenarios
- Establishing CP property of Higgs bosons
- Higher mass reach and covering LHC wedge
- Testing Higgs selfinteraction

Search for SUSY particles