Two photon results from LEP Mariusz Przybycień

AGH-UST Cracow

<u>LEP:</u> e⁺ e⁻ collisions at cms energies: 1989 - 1995: √s = 91 GeV (LEP1)

1996 - 2000: $\int s = 161 - 209 \text{ GeV}$ (LEP2)

Experiments: ALEPH, DELPHI, L3, OPAL

Study of two photon interactions through $e^+e^- \rightarrow e^+e^-\gamma^{(*)}\gamma^{(*)}$

- Untagged ev. total cross section, jets production, heavy quarks, exclusive particle production
- Single-tagged ev. QED and hadronic structure functions of the quasi-real photon
- Double-tagged ev. dynamics of highly virtual photon collisions

 $\rightarrow e^+e^-X$

 $e(p'_1)$

 $e(p_2)$

 $e(p_1)$

 $e(p_2)$

 $\gamma^{(\star)}(\mathrm{q}_1)$

 $\gamma^{(\star)}(\mathrm{q}_2)$

The following LO diagrams contribute to the proces $\gamma\gamma \rightarrow$ hadrons:

Kinematical variables for the process $\gamma\gamma \rightarrow$ hadrons:

- photon-photon scattering has the largest hadronic cross section at LEP2 energies
- in the framework of Regge theory $\sigma_{_{YY}}$ is related to $\sigma_{_{YD}}$ and $s_{_{hh}}$ and a slow rise with $W_{\gamma\gamma}$ is predicted

Measurement (L3, OPAL):

- first measure the differential cross section $d\sigma_{ee}/dW$ for the process: $e^+e^- \rightarrow e^+e^-$ + hadrons
 - increasing with the beam energy
 - decreasing with $W_{\gamma\gamma}$ (efect of the $L_{\gamma\gamma}$)
- extract $\sigma_{\gamma\gamma}$ using the luminosity function $L_{\gamma\gamma}$ and form factors F(Q²) which describe the Q² dependence of the hadronic cross section

$$\frac{\mathbf{d}\boldsymbol{\sigma}_{ee}}{\mathbf{d}\mathbf{W}} = \mathbf{L}_{\boldsymbol{\gamma}} \otimes \boldsymbol{\sigma}_{\boldsymbol{\gamma}}$$

OPAL: $\int s = 161 - 183 \text{ GeV}^2$ 10 < W < 110 GeV

3:
$$\int s = 161 - 202 \text{ GeV}^2$$

5 < W < 185 GeV

- Good agreement with previous measurements in the overlaping region
- Rise with W for W > 10 GeV² which is characteristic for hadronic cross sections
- L3 data show steeper rise then expected for hadron-hadron or photon-proton cross sections.

<u>OPAL fit:</u> Regge parametrization with soft and hard pomeron:

$$\sigma_{\gamma\gamma}(\mathbf{W}^2) = \mathbf{X}_{1\gamma\gamma}(\mathbf{W}^2)^{\varepsilon_1} + \mathbf{X}_{2\gamma\gamma}(\mathbf{W}^2)^{\varepsilon_2} + \mathbf{Y}_{1\gamma\gamma}(\mathbf{W}^2)^{-\eta_1}$$

fix reggeon term: $\eta_1 = 0.34$ oraz $Y_{1\gamma\gamma} = 320$ nb 800results of the fit: $X_{2\gamma\gamma} = 0.5 \pm 0.2(\text{stat})^{+1.5}_{-1.0}(\text{sys})$ nb L3 fit OPAL fit what is consistent with zero (no hard pomeron) م_۲ [nb] results of the fit: $\epsilon_1 = 0.101 \pm 0.004 (\text{stat})^{+0.025}_{-0.019} (\text{sys})$ 400- $X_{1\gamma\gamma} = 180 \pm 5(\text{stat})^{+30}_{-32}(\text{sys}) \text{ nb}$ L3 fit: 200 Regge parametrization with soft pomeron L3 ★ OPAL fix reggeon term: $\eta_1 = 0.358$ results of the fit: $\varepsilon_1 = 0.225 \pm 0.021$ 0 50 150 100 $X_{1\gamma\gamma} = 58 \pm 10$ nb $Y_{1\gamma\gamma} = 1020 \pm 146$ nb W _w [GeV]

Inclusive jet cross section

NLO cross section calculated using QCD partonic cross sections in NLO for direct, single- and double-resolved processess convoluted with photon flux + hadronization corrections.

OPAL data well described by both Pythia and NLO.

Discrepancy in shape between L3 and NLO.

Disagreement between L3 and OPAL.

Di-jet cross production

Experimentaly, direct and double-resolved interactions can be clearly

Production of charged hadrons

Sensitivity to the structure of γ - γ interactions without theoretical and experimental problems related to definition and reconstruction of jets.

Production of charged hadrons

Differential cross sections measured by OPAL fall more rapidly towards high transverse momenta than those measured by L3, leading to a disagreement between the two experiments and to a better description of the OPAL data by NLO QCD.

For the puprose of this comparison OPAL data have been scaled to reduced |c| range and to the fraction of pions in all charged hadrons.

M.Przybycień

Isolated prompt photons

In LO only single and double resolved diagrams contribute to production of prompt photons $\gamma+\gamma \rightarrow \gamma$ +hadrons:

Total cross section in the kinematic range defined by anti-tagging condition, measured by OPAL at $\sqrt{s_{ee}}$ =183-209 GeV:

$$\sigma_{tot} = 0.32 \pm 0.04(stat) \pm 0.04(sys)$$

Cross sections measured in the kinematic range $|\eta^{\gamma}| < 1$ and $p^{\gamma}_{T} > 3$ GeV

- Pythia reproduces the shape of the distributions well, but underestimate the normalisation.
- NLO calculations describe well shape and normalisation.

Kinematics of $e-\gamma$ and e-e DIS

$$s = (k+l)^2$$
 $W^2 = (p+q)^2$

$$Q^{2} \equiv -q^{2} = -(k - k')^{2} > 0$$

 $P^{2} \equiv -p^{2} = -(l - l')^{2} \approx 0$

W²: $\gamma^* - \gamma$ cms energy squared Q²: virtuality of the probe photon P²: virtuality of the target photon

s: e⁺e⁻ cms energy squared

y_e: inelasticity, fraction of the elec. mom carried by the virtual photon x: fraction of the target photon mom carried by the struck parton z: fraction of the target electron mom carried by the struck parton

Reconstruction of the kinematical variables is based on the measurement of the scattered electron and the hadronic final state:

$$Q^{2} = 2E'E_{b}(1 - \cos\theta) \qquad W^{2} = \left(\sum_{h} E_{h}\right)^{2} - \left(\sum_{h} \vec{p}_{h}\right)^{2}$$
$$y_{e} = 1 - \frac{E}{E_{b}}\cos^{2}(\theta/2) \qquad x = \frac{Q^{2}}{Q^{2} + W^{2} + P^{2}} \qquad z = \frac{Q^{2}}{y_{e}s}$$

M.Przybycień

Cross section for $e^+e^- \rightarrow e^+e^-\gamma^{\Sigma}\gamma \rightarrow e^+e^-X$

The cross section in terms of the photon structure functions F_{2}^{γ} and F_{L}^{γ} :

$$\frac{d^{4}\sigma_{ee}}{dxdQ^{2}dzdP^{2}} = \frac{2\pi\alpha^{2}}{x^{2}Q^{4}} \Big[\Big(1 + (1 - y_{e})^{2}\Big) F_{2}^{\gamma}(x,Q^{2},P^{2}) - y_{e}^{2}F_{L}^{\gamma}(x,Q^{2},P^{2}) \Big] \hat{f}_{\gamma/e}(z/x,P^{2})$$

where the flux of (transverse) quasi-real photons given by EPA reads:

$$\hat{f}_{\gamma/e}(y,P^{2}) = \frac{\alpha}{2\pi} \frac{1}{P^{2}} \left[\frac{1 + (1-y)^{2}}{y} - 2y \frac{m_{e}^{2}}{P^{2}} \right]$$

$$P_{\min}^{2}(y) = \frac{m_{e}^{2}y^{2}}{1-y}$$
$$P_{\max}^{2}(y) = (1-y)E^{2}\theta_{\max}^{2}$$

Integrating over z and P² we obtain:

$$\frac{d^2 \sigma_{ee}}{dx dQ^2} \approx \frac{2\pi\alpha^2}{xQ^4} F_2^{\gamma} (x, Q^2, P_{eff}^2) \mathbf{K} \left(\frac{Q^2}{xs}, \frac{P_{max}^2}{m_e^2}\right)$$

$$\left\langle F_{2}^{\gamma}(P^{2})\right\rangle = F_{2}^{\gamma}\left(P_{eff}^{2}\right)$$

Usually the formula for the cross section for the process $e\gamma \rightarrow eX$ is used for extraction of the F_2^{γ} based on MC and known input pdf:

$$\frac{d^{2}\sigma_{e\gamma}}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}} \left[\left(1 + \left(1 - y_{e} \right)^{2} \right) F_{2}^{\gamma} \left(x, Q^{2}, P_{eff}^{2} \right) \right]$$
 usualy we assume $P_{eff}^{2} = 0$

M.Przybycień Workshop on High Energy Photon Collisions at LHC, CERN, 22-25.04.2008

14

World data on F_2^{γ} vs. Q^2

Measurement of F₂^{charm}

World data on $F_{2,QED}^{\gamma}$ vs. Q^2

constant (const fit: $F_{B}^{\gamma}/\alpha = 0.032$ (0.034) OPAL (L3) with $\chi^{2}/ndf = 8.9$ (3.1))

Precision of QED measurements

Interactions of virtual photons

The general form of the differential cross section for the process $e(p_1)e(p_2) \rightarrow e(p_1')e(p_2')X$ which proceeds via the exchange of two photons $\gamma(q_1)$, $\gamma(q_2)$ in the limit $Q_i^2 \gg m_e^2$, is given by:

$$d^{6}\sigma = \frac{d^{3}p_{1}'d^{3}p_{2}'}{E_{1}'E_{2}'} \frac{\alpha^{2}}{16\pi^{4}q_{1}^{2}q_{2}^{2}} \left[\frac{(q_{1} \cdot q_{2})^{2} - q_{1}^{2}q_{2}^{2}}{(p_{1} \cdot p_{2})^{2} - m_{e}^{2}m_{e}^{2}} \right]^{1/2} 4\rho_{1}^{++}\rho_{2}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(p_{1} \cdot p_{2})^{2} - m_{e}^{2}m_{e}^{2}} d\rho_{1}^{++}\rho_{2}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(p_{1} \cdot p_{2})^{2} - m_{e}^{2}m_{e}^{2}} d\rho_{1}^{++}\rho_{2}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(p_{1} \cdot p_{2})^{2} - q_{1}^{2}q_{2}^{2}} d\rho_{1}^{++}\rho_{2}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(q_{1} \cdot q_{2})^{2} - q_{1}^{2}q_{2}^{2}} d\rho_{1}^{++}\rho_{2}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(q_{1} \cdot q_{2})^{2} - q_{1}^{2}q_{2}^{2}} d\rho_{1}^{++}\rho_{2}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(q_{1} \cdot q_{2})^{2} - q_{1}^{2}q_{2}^{2}} d\rho_{1}^{++}\rho_{2}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(q_{1} \cdot q_{2})^{2} - q_{1}^{2}q_{2}^{2}} d\rho_{1}^{++}\rho_{2}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(q_{1} \cdot q_{2})^{2} - q_{1}^{2}q_{2}^{2}} d\rho_{1}^{++}\rho_{2}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(q_{1} \cdot q_{2})^{2} - q_{1}^{2}q_{2}^{2}} d\rho_{1}^{++}\rho_{2}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(q_{1} \cdot q_{2})^{2} - q_{1}^{2}q_{2}^{2}} d\rho_{1}^{++}\rho_{2}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(q_{1} \cdot q_{2})^{2} - q_{1}^{2}q_{2}^{2}} d\rho_{1}^{++}\rho_{2}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(q_{1} \cdot q_{2})^{2} - q_{1}^{2}q_{2}^{2}} d\rho_{1}^{++}\rho_{2}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(q_{1} \cdot q_{2})^{2} - q_{1}^{2}q_{2}^{2}} d\rho_{1}^{++}\rho_{2}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(q_{1} \cdot q_{2})^{2} - q_{1}^{2}q_{2}^{2}} d\rho_{1}^{++}\rho_{2}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(q_{1} \cdot q_{2})^{2} - q_{1}^{2}} d\rho_{1}^{++}\rho_{2}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(q_{1} \cdot q_{2})^{2} - q_{1}^{2}} d\rho_{1}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(q_{1} \cdot q_{2})^{2}} d\rho_{1}^{++} \cdot \frac{(q_{1} \cdot q_{2})^{2}}{(q_{1} \cdot q_{$$

Introducing the luminosity function, we define the cross section for the scattering of two virtual photons $\gamma^{\Sigma}\gamma^{\Sigma} \rightarrow X$:

$$\mathbf{Y} d^{6} \sigma = \frac{d^{3} p_{1}' d^{3} p_{2}'}{E_{1}' E_{2}'} \mathbf{L}_{\mathrm{TT}} \sigma_{\gamma^{*} \gamma^{*}}$$

$$\sigma_{\gamma^{*} \gamma^{*}} = \sigma_{\mathrm{TT}} + \sigma_{\mathrm{LT}} + \sigma_{\mathrm{TL}} + \sigma_{\mathrm{LL}} + \frac{1}{2} \tau_{\mathrm{TT}} \cos 2\overline{\phi} - 4\tau_{\mathrm{TL}} \cos \overline{\phi}$$

$$L_{\mathrm{TT}} = \frac{d^{3} p_{1}' d^{3} p_{2}'}{E_{1}' E_{2}'} \mathbf{L}_{\mathrm{TT}}$$

QED structure of the virtual photon

Structure function of virtual photon

PLUTO data suggest, as expected slow decrease with increasing P²

Structure of virtual photon interactions

Cross sections for the processes $e^+e^- \rightarrow e^+e^-hadrons$ and $\gamma^{\Sigma}\gamma^{\Sigma} \rightarrow hadrons$, in the phase space region E_i >0.4 E_b , 34< θ_i <55 mrad, W>5 GeV; $\langle Q^2 \rangle$ =17.9 GeV²

Scattering of virtual photons

Dynamics of interactions of virtual photons

Electron structure function

 $\frac{7}{1}$ Cross section in terms of electron structure functions:

$$\frac{d^{2}\sigma_{ee}}{dzdQ^{2}dzdP^{2}} = \frac{2\pi\alpha^{2}}{zQ^{4}} \Big[\Big(1 + (1 - y_{e})^{2} \Big) F_{2}^{e}(z,Q^{2}) - y_{e}^{2}F_{L}^{e}(z,Q^{2}) \Big]$$

Photon and electron structure functions are related:

$$F_{a}^{e}(z, Q^{2}; P_{\max}^{2}) \equiv \int_{z}^{1} dx \int_{P_{\min}^{2}(z/x)}^{P_{\max}^{2}} dP^{2} \frac{z}{x^{2}} F_{a}^{\gamma}(x, Q^{2}, P^{2}) \hat{f}_{\gamma^{*}/e}(z/x, P^{2})$$

Summary

LEP2 - the best place to study two photon interactions:

~100 published papers from all four experiments (mainly from LEP2)

Untagged measurements:

- total cross section
- jet and di-jet production
- production of resonances, charged hadrons, prompt photons, charm and beauty

Single tagged measurements:

QED and hadronic structure functions of the quasi-real photon

Double tagged measurements:

- QED and hadronic structure of interactions of virtual photons
- total and differential cross sections and effective structure function of the virtual photon

More about tagged measurements in http://home.agh.edu.pl/mariuszp