Exclusive Dilepton (e⁺e⁻, $\mu^+\mu^-$,J/ Ψ , Ψ' ,Y) and Diphoton Production at CDF II

James L. Pinfold University of Alberta HIGH ENERGY PHOTON COLLISIONS AT THE LHC

MENU: CDF Motivation $e^+e^- \gamma \gamma \mu^+\mu^-$, J/ Ψ , Ψ' , Y χ_c Odderon Genesius in the LHC Workshop on High Energy Photon Collisions at the LHC

CDF Detector + Performance

Motivation: for Exclusive Studies

Motivations to study exclusive lepton pair production:

- Potential to improve luminosity measurements at LHC since the cross section is known to better than ~5 %
- Can be used as a control sample for exclusive processes whose crosssections are not well predicted ($\gamma\gamma$, χ_{γ} , Higgs, ...)
- For example, a place to search for χ_c and the odderon
- Can be used to calibrate forward proton spectrometers (FP420) at LHC (important in the search for new physics & Higgs in exclusive channel)
- Main motivation to study exclusive $pp \rightarrow p + \gamma \gamma + p$
 - This process is a "standard candle" for exclusive Higgs production

MENU: CDFMotivation $e^+e^ \gamma\gamma$ $\mu^+\mu^-, J/\Psi, \Psi', Y$ χ_c OdderonConclusionsJames L. PinfoldWorkshop on High EnergyPhoton Collisions at the LHC3

Exclusive e⁺e⁻ Production (1)

■ Central state produced via QED γγ → e⁺e⁻

- Protons do not dissociate
- Only e^+e^- are produced \rightarrow nothing else
- Process has never been observed before in hadron-hadron collisions

MENU: CDFMotivation $e^+e^- \gamma \gamma \mu^+\mu^ \mu^+\mu^ J/\Psi, \Psi', Y \chi_c$ OdderonConesiusWorkshop on High EnergyPhoton Collisions at the LHC

Exclusive e⁺e⁻ Production (2)

- Integrated luminosity → 532 ± 32 pb⁻¹ —DIFF_DIPHOTON Trigger:
 - 2 EM clusters with E_T >4GeV plus a veto on BSC 1 (E+W)

Exclusive e⁺e⁻ events are selected by:

- Reconstructing the e⁺e⁻
- Requiring that there is no other activity in $|\eta| < 7.4$
- Photons have $E_T > 5$ GeV and |h| < 2
- 16 e⁺e⁻ candidates selected

Backgrounds 1.9 ± 0.3 events:

- dijet fake (0.0 +0.1 -0.0)
- cosmic (negligible)
- inclusive distribution (0.3+/-0.1)
- dissociation (1.6 ± 0.3) (these are also gg →e⁺e⁻ where one (or both) proton(s) dissociate)

MENU: CDF Motivation $e^+e^- \gamma \gamma \mu^+\mu^-$, J/ Ψ , Ψ' , Y χ_c Odderon **Games Lusions** d Workshop on High Energy Photon Collisions at the LHC

Exclusive e⁺e⁻ Production (3)

Kinematics of 16 event candidate sample match the predictions
of the LPAIR signal MC (J. Vermaseren. Nucl. Phys., B229 347 371, 1983)- e⁺e⁻ are collinear in φ and have matching E_T

 171 ± 0.01 nh

• Cross-section for $\gamma\gamma \rightarrow e^+e^-$ LPAIR theory:

MENU: CDF Motivation $e^+e^- \gamma \gamma \mu^+\mu^-$, J/ Ψ , Ψ' , Y χ_c Odderon **Genesiusions** d Workshop on High Energy Photon Collisions at the LHC

Exclusive e⁺e⁻ Production (4)

$$\sigma_{MEASURED} = 1.6 + 0.5 - 0.3$$
 (stat) ± 0.3 (sys) pb

- Agrees with LPAIR theory: $\sigma_{IPAIR} = 1.71 \pm 0.01 \text{ pb}$
- Probability of 1.9 $\rightarrow \geq 16 = 1.3 \times 10^{-9}$ corresponds to 5.5 σ "observation"
- This is the first observation of exclusive two-photon produced e⁺e⁻ interactions in hadron-hadron collisions
- The LHC can rely on measuring such processes for luminosity measurement, etc.

PRL 98, 112001 (2007) PHYSICAL REVIEW LETTERS

week ending 16 MARCH 2007

Observation of Exclusive Electron-Positron Production in Hadron-Hadron Collisions

A. Abulencia,²³ J. Adelman,¹³ T. Affolder,¹⁰ T. Akimoto,⁵⁵ M. G. Albrow,¹⁶ D. Ambrose,¹⁶ S. Amerio,⁴³ D. Amidei,³⁴ A. Anastassov,⁵² K. Anikeev,¹⁶ A. Annovi,¹⁸ J. Antos,¹ M. Aoki,⁵⁵ G. Apollinari,¹⁶ J.-F. Arguin,³³ T. Arisawa,⁵⁷

We have many more candidates in new data with dedicated 2-EM shower triggerMENU: CDF Motivation $e^+e^- \gamma \mu^+\mu^-$, $J/\Psi, \Psi', Y \chi_c$ OdderonCanes Usions dWorkshop on High Energy Photon Collisions at the LHC7

Exclusive $\gamma\gamma$ Study (1)

where X has $J^{PC} = 0^{++}$

Exclusive γγ events:

- selected in the same way as e⁺e⁻ (except tracking)

Selected in the same way as γγ→e⁺e⁻ (except tracks) agreement of γγ →e⁺e⁻ cross section gives confidence in analysis methodology

MENU: CDF Motivation $e^+e^- \gamma \gamma \mu^+\mu^-$, $J/\Psi, \Psi', Y \chi_c$ Odderon **Ganesiusions** d Workshop on High Energy Photon Collisions at the LHC

Exclusive $\gamma\gamma$ Study (2)

- **3** candidate events are found in 532 pb-1 of Run II data.
- Background 0.09 ± 0.04 events (dominated by misid. of excl.)
- Good agreement on kinematics with ExHume MC (Monk & Pilkington. hep-ph/0502077)
- **0.8** +1.6 -0.5 events predicted from ExHuME MC -2 candidates are almost certainly $\gamma\gamma$ but the $\pi^0\pi^0/\eta\eta$ hypotheses cannot be excluded

MENU: CDFMotivation $e^+e^- \gamma \gamma \mu^+\mu^-, J/\Psi, \Psi', Y \chi_c$ OdderonConesius FormsidWorkshop on High EnergyPhoton Collisions at the LHC

Exclusive $\gamma\gamma$ Candidates (1)

PRL 99, 242002 (2007) PHYSICAL REVIEW LETTERS

week ending 14 DECEMBER 2007

Search for Exclusive $\gamma\gamma$ Production in Hadron-Hadron Collisions

T. Aaltonen,²³ A. Abulencia,²⁴ J. Adelman,¹³ T. Affolder,¹⁰ T. Akimoto,⁵⁵ M. G. Albrow,¹⁷ S. Amerio,⁴³ D. Amidei,³⁵ A. Anastassov,⁵² K. Anikeev,¹⁷ A. Annovi,¹⁹ J. Antos,¹⁴ M. Aoki,⁵⁵ G. Apollinari,¹⁷ T. Arisawa,⁵⁷ A. Artikov,¹⁵

We have found >10 more candidates in new data with new di-EM shower trig.

MENU: CDF Motivation $e^+e^- \gamma \gamma \mu^+\mu^-$, J/ Ψ , Ψ' , Y χ_c Odderon **Genesiusions** d Workshop on High Energy Photon Collisions at the LHC

Exclusive $\gamma\gamma$ Candidates (2)

- The upper limit of the cross-section pp --> p γγ p is set at 410 fb with 95% confidence level (taking into account the background + its uncertainty, signal selection efficiency, & L_{int})
- If 2 of the 3 candidates are γγ events we obtain a cross section:

$$\sigma(2 \otimes \alpha \otimes \beta) = (9 \otimes_{0}^{10} \otimes \beta) = (6 \otimes \beta)$$

Durham Group Khoze, Martin, Ryskin & Stirling hep-ph/0507040 Eur.Phys.J C38 (2005) 475 : 38 fb with factor ~ 3 uncertainty

MENU: CDFMotivatione+e-γγμ+μ-, J/Ψ,Ψ', Y χ_c OdderonConeclusionsWorkshop on High EnergyPhoton Collisions at the LHC

Exclusive $\mu^+\mu^-$ Production (1)

- Trigger (DIFF_CHIC_CMU1.5_PT1.5_TRK):
 - BSC Gap, east & west
 - muon + track ($p_t > 1.3$; $|\eta| < 1.2$)
 - $2.7 < M(muon + track) < 4.0 \text{ GeV}c^2$
- No other activity in the events (to an $|\eta|$ of 7.4)
- The existing sample corresponds to a luminosity 1.48 fb⁻¹
- Also higher mass muons have just been stripped, (trigs with $p_t(\mu) > 4$ GeV, 2 muons, no Df requirement).
- Should be very efficient for dimuons, with M >~ 9 GeV, covering the Upsilon region and above.

MENU: CDF Motivation $e^+e^- \gamma \gamma \mu^+\mu^-, J/\Psi, \Psi', Y \chi_c$ Odderon **Games Lusions** Workshop on High Energy Photon Collisions at the LHC

Exclusive $\mu^+\mu^-$ Production (2)

Example exclusive $\mu^+\mu^-$ event: Run 199559, Event 13120174

MENU: CDFMotivatione+e-γγ $\mu^+\mu^-$, J/Ψ,Ψ', Y χ_c OdderonConeclusionsWorkshop on High EnergyPhoton Collisions at the LHC

Exclusive $\mu^+\mu^-$ Production (3)

Integrated luminosity – 1.48 fb⁻¹

Offline cuts

- Loose quality cuts
- $P_T(\mu) > 1.4 \text{ GeV/c } \& |\eta(\mu)| < 0.6$
- Cosmic ray cuts (abs (delta_TOF) < 3 ns)
- Exclusivity cuts (same as for the e⁺e⁻ paper)

Analysis of cuts is underway

- Acceptance
- Efficiency
- Effective luminosity
- STARLIGHT Monte Carlo simulation employed (S. Klein & J. Nystrand)

MENU: CDFMotivation $e^+e^ \gamma\gamma$ $\mu^+\mu^-$, $J/\Psi, \Psi', Y$ χ_c OdderonConesius FormsidWorkshop on High EnergyPhoton Collisions at the LHC

Exclusive $\mu^+\mu^-$ Candidates (1)

Many candidate events (334) have been found (CDF-II Preliminary) We expect to increase the number of candidates after review of the cuts

MENU: CDF Motivatione+e-γγ $\mu^+\mu^-$, J/Ψ,Ψ', Y χ_c OdderonConeclusionsWorkshop on High EnergyPhoton Collisions at the LHC

Exclusive $\mu^+\mu^-$ Candidates (2)

Cares Usionsd

Workshop on High Energy Photon Collisions at the LHC

Exclusive χ_c Production Background

- Similar selection as μ⁺μ⁻ search with additional single isolated EM shower req.
- 10 candidates in 93 pb⁻¹ of data
- Many more candidates with new trigger
- New ChicMC (James Stirling)
- ExAnalysis in the doldrums after Angela Wyatt left for industry
- It is just now being actively worked on...watch this space
- Problem is understanding low energy photon background
- Many more events with new trigger

Expla(1003sin115)

MENU: CDF Motivation $e^+e^-\gamma\gamma \mu^+\mu^-, J/\Psi, \Psi', Y \chi_c$ Odderon **Genesiusions** Workshop on High Energy Photon Collisions at the LHC

Exclusive $\mu^+\mu^-$ Candidates (High Mass) (1)

Find Exclusive events using

- Number of associated tracks = 0
- Kinematics: $\Delta \phi \approx 180^{\circ}$, $\Delta p_T \approx 0$, (or $\Sigma P_T \approx 0$)
- Trigger: 2 central muons with $p_T > 4 \text{ GeV/c}$
- $L = 890/pb^{-1} \sim 2.3 M \text{ events.}$
- Remove cosmic rays (timing + colinearity)
- Require on beam-line. Count additional (associated) tracks (n_ass) within 5 cm of μ⁺μ⁻ vertex.
- Cleanliness, backgrounds & acceptances being studied.
- Number of events "reasonable" for QED process & Lumi.

MENU: CDFMotivation $e^+e^ \gamma\gamma$ $\mu^+\mu^-, J/\Psi, \Psi', Y$ χ_c OdderonConeclusionsWorkshop on High EnergyPhoton Collisions at the LHC

Exclusive $\mu^+\mu^-$ Candidates (High Mass) (2)

Invariant Mass - Upsilon Region $\Delta \phi > \mathbb{R}_{\mathcal{A}} + \mu$

MENU: CDF Motivation $e^+e^- \gamma \gamma \mu^+\mu^-$, $J/\Psi, \Psi', Y \chi_c$ Odderon **Genesiusitoms** Workshop on High Energy Photon Collisions at the LHC

Exclusive $\mu^+\mu^-$ Candidates (High Mass) (3)

Now apply "super clean" exclusivity cuts as in low mass *l*-pair mass i.e. no pile-up, and only μ -pairs detected

Exclusive Di-leptons – a Good Place to Search for the Odderon

- In perturbative QCD the lowest order prototype of the pomeron is the color neutral system of two gluons.
- The odderon is the C-odd partner of the pomeron the hard odderon skeleton consists of three gluons in a color neutral state.
- Global fits of the available hh and hh-bar data seem to establish that HE scattering dominated by exchange of the C = P = +1 Pomeron.
- If the Odderon exists it would contribute to the exclusive J/Ψ and Ψ' signal and be part of our signal
- The Odderon would contribute to J/Ψ , Ψ , Y peaks unlike the χ_c background

MENU: CDFMotivation $e^+e^ \gamma\gamma$ $\mu^+\mu^-, J/\Psi, \Psi', Y$ χ_c OdderonConeclusionsWorkshop on High EnergyPhoton Collisions at the LHC

Conclusion

- The paper on the observation of exclusive p-p →p + e⁺e⁻ + p production has been published in PRL (March 2007)
 - + Studies continue with new low E_{τ} di-photon trigger
- The study of exclusive $p-p \rightarrow p + \gamma \gamma + p$ production was published in PRL (December 2007)
 - Studies are continuing with a new low E_T di-photon trigger (E_T >3GeV)
- The study of $p p \rightarrow p + \mu^+ \mu^- + p$, J/ψ , J/ψ ', Y, is underway
- Implications for the LHC
 - Use of $\gamma \gamma \rightarrow \mu^+ \mu^- /e^+e^-$ as a luminosity monitor
 - Study of $\gamma \gamma \rightarrow \mu^+ \mu^- g \cdot p \rightarrow Y \rightarrow \mu^+ \mu^-$ as a calibration for FP420 is underway
 - Exclusive study of $p-p \rightarrow J/\Psi$, $\Psi', \dots \rightarrow \mu^+ \mu^-$ is a good place to search for the odderon
 - The process $p p \rightarrow \gamma \gamma / \chi_c$ is a standard candle for the exclusive Higgs
 - We are understanding how to use the LHC as a $\gamma\gamma$, γ -p (γ -IP) & IP-IP collider

MENU: CDF Motivation $e^+e^- \gamma \gamma \mu^+\mu^-$, J/ Ψ , Ψ' , Y χ_c Odderon **James Uspinfold** Workshop on High Energy Photon Collisions at the LHC

Extra Slides

Tevatron Performance

pp collisions @ $\sqrt{s} = 1.96 \ TeV$ $\mathscr{L}_{inst} = 20 \text{ to } 160 \times 10^{30} \text{ cm}^2 \text{ s}^{-1}$ $\overline{\Delta t}_{bunch} = 580 \text{ ns}$ radius = 1 km 36 bunches $\sigma_{inel} = 60 \text{ mb}$ $\overline{n} = \sigma_{inel} \mathscr{L}_{inst} \ \overline{\Delta t}_{bunch}$ ~ 1 to 6 interactions per crossing

. . .

very important when searching for exclusive states without proton taggers

Collider Run II – anticipated $6 \rightarrow 7 \text{ fb}^{-1}$ by end FY09 with 2010 running $7 \rightarrow 9 \text{ fb}^{-1}$

Motivation: for Exclusive Studies (1)

- We are looking at *exclusive* channels to study:
 - LHC as a $\gamma\gamma$ collider exclusive production models for new and SM physics
 - Measurement of luminosity at the LHC &
 - Calibration of forward detectors (FP420) using $\gamma\gamma \rightarrow l^+l^-$
 - LHC as a γp collider higher energy reach & luminosity yield than for $\odot \odot$ case
 - Experimental techniques to select exclusive events at the LHC
- Advantages: reconstruct mass of central state (if protons tagged)

Related measurements:

In pp Collisions: D. Antreasyan et al., CERN-EP/80-82 (1980).

In ep Collisions:

In Heavy Ion Collisions: A. Belkacem et al., Phys. Rev. A 56, 2806 (1997); C. Vane et al., Phys. Rev. A 50, 2313 (1997); R. Baur et al., Phys. Lett. B 332, 471 (1994); J. Adams et al., Phys. Rev. C 70, 031902 (2004).

Motivation: for Exclusive Studies (2)

Number of Higgs events for <u>single</u> tags and assuming integrated luminosity of 30, 0.3 and 0.03 fb¹ for *pp*, *pAr* and *ArAr* collisions, respectively.

γγ→H

beam dipole dipole dipole p' roman pots p'

Reconstruct central state using FP420

Motivation: for Exclusive Studies (3)

where X has $J^{PC} = 0^{++}$

- Two significant advantages over inclusive case:
 - mass of **X** can be determined from outgoing protons
 - 'measures' the quantum numbers of X
- Exclusive channels we are looking at involve photons:
 - $\forall \gamma \gamma$ very 'clean' signature, but low cross section
- This channel is a Standard Candle for exclusive DPE Higgs prod. (Calculations of V.Khoze et al., show that pomeron-pomeron cross-sections for Higgs production are a few times larger than for the γγ case)

Central Exclusive 2-Photon Production

Cleanest test of p+H+p theory MGA et al. (2001) hep-ex/0511057 Khoze, Martin and Ryskin, hep-ph/0111078, Eur.Phys.J. C23: 311 (2002) KMR+Stirling hep-ph/0409037

QCD diagram identical to pHp

 $\mathbf{N}(\mathbf{k}) - \mathbf{D} - \mathbf{M}(\mathbf{k})$ xxsining Obs top up (mink)

-4 Deventsport B vit 17() -5 Carlos 10

Claim factor ~ 4 uncertainty

W WSa Windhandle

Exclusive e⁺e⁻ Study Results

•	Jet Fakes:
---	------------

- Cosmics:
- Inclusive (QCD) events:
- Dissociation events:

0.0^{+0.1}-0.0 events negligible 0.3 ± 0.1 events 1.6 ± 0.3 events

- Electron ID: (26 ± 3) % Cosmic Rejection:
- Final State Radiation:
- Exclusive Cuts:

 (93 ± 3) % (79 ± 5) % 8.6 %

$\sigma_{measured} = 1.6(stat) \pm 0.3(sys)pb$

corresponds to 5.5σ observation"

PRL 98, 112001 (2007)	PHYSICAL REVIEW LETTERS	week ending 16 MARCH 2007
Observation of Ex	clusive Electron-Positron Production in Hadron-Ha	dron Collisions
A. Abulencia, ²³ J. Adelman, ¹³	³ T. Affolder, ¹⁰ T. Akimoto, ⁵⁵ M. G. Albrow, ¹⁶ D. Ambrose, ¹⁶ S	. Amerio, ⁴³ D. Amidei, ³⁴

A. Anastassov, K. Anikeev, A. Annovi, J. Antos, M. Aoki, G. Apollinari, J.-F. Arguin, T. Arisawa,

The Odderon

- The color neutral gluon systems, exchanged at high energy scattering processes, can be classified wrt their C parity. The most important one is C-even system with quantum numbers of vacuum i.e. the pomeron.
- In perturbative QCD the lowest order prototype of the pomeron is the color neutral system of two gluons.
- The odderon is the C-odd partner of the pomeron the hard odderon skeleton consists of three gluons in a color neutral state.
- One would naively expect a suppression by a power of the coupling constant s for the additional gluon). It is not clear, however, why the contribution of the odderon is so small that it has not been definitely observed by any experiment.