High-p_T Processes and the Photon Structure

(Jet) Photoproduction Results from HERA

Thomas Schörner-Sadenius Ш Hamburg University 茁

on behalf of the H1 and ZEUS Collaborations

Workshop on **High-Energy Photon Collisions CERN**, 22 April 2008

- Introduction
- The resolved photon
- Jet cross sections
- PDF sensitivity
- Prompt photon production
 Underlying event and MPI

HERA, H1, ZEUS

operation from 1992-2007
world's largest electron microscope (λ~1/Q).
820/920 GeV protons on 27.5 GeV electrons.

PHYSICS AT HERA

The electron as a probe for the proton structure

JETS: WHY AND WHAT?

Jet technicalities:

- longitudinally invariant k_{T} algorithm in inclusive mode
- Run on calorimeter cells or "energy flow objects".
- Hard jets selected using cuts on transverse energy E_{T} ,
- Detector acceptances -1 < η < 2.5, with η = –ln tan(θ /2).
- (Jet energy scale and jet E_T corrections.)

Direct versus resolved photoproduction:

- Quasi-real photon can fluctuate into hadronic system before undergoing the hard scattering: "resolved" interactions.
- Proton and photon momentum fractions x_p and x_y :

iet iet

CONFIRMATION: RESOLVED CONCEPT

Observable: CMS scattering angle: $\cos\theta^*$:

$$\cos\theta^* = \tanh\left(\frac{\eta^{(1)} - \eta^{(2)}}{2}\right)$$

→ Resolved should rise more rapidly due to different nature of propagator:

H1 data, 66.6 pb⁻¹, 0.1 < y < 0.9 Dijets; Ε_τ > 25 GeV, -0.5 < η < 2.75 \rightarrow similar results from ZEUS (DESY-01-220)

AMOUNT OF RESOLVED (PHP AND DIS)?

Single-differential dijet cross section $d\sigma/dQ^2$:

- For photoproduction $Q^2 = 0$ and DIS (here for $Q^2 < 1000 \text{ GeV}^2$).
- Separately for direct and resolved events ($x_v <>0.75$).

- → Even at Q² = 500 GeV² about 24% "resolved" events!
- \rightarrow NLO QCD ~30% too low.
- → Resolved contribution in DIS not described by NLO QCD (not included in DISASTER++)
- → LO MC models can describe the data.
- → For Q² = 0 data in agreement with NLO.

ZEUS data, 38.6 pb⁻¹, 0.2 < y < 0.55 Dijets; E_T > 7.5/6.5 GeV, -3 < $\eta_{\gamma p}$ < 0

Cross-sections in direct and resolved:

PDF SENSITIVITY

Theoretical uncertainties ...

... for different kinematic regions.

Proton PDF: Sometimes dominant! Photon PDF: Large effect!

In addition: partly large gluon contributions from p and/or γ:

Potential to constrain both photon
 + proton PDFs using high-E_T PHP!

IMPROVING THE PROTON PDF

Use of double-differental direct dijet cross sections in NLO QCD fits together with DIS jet data ...

JETS IN PHP: RESOLVED

... the corresponding resolved data:

Data not described over all phase-space.
Systematic differences between GRV and AFG photon PDFs (15%).

JETS IN PHP: x_y, x_p

Interest in photon (and proton) structure H1 data, 66.6 pb⁻¹, 0.1 < y < 0.9 Dijets; E_T > 25 GeV, -0.5 < η < 2.75 \rightarrow measure x_v (and x_p)! [q X_n < 0.1 x_n > 0.1 300 do/dx 250 200F ---NLO $\underset{\text{MLO}}{\longrightarrow}$ NLO × (1+ δ_{md}) 150Þ 00000000 ······ PYTHIA × 1 Z 150 1001 100 50È **QCD-Compton** 50 **Boson-gluon** (15%) fusion (70%) 0.4 0.5 0.5 0.7 0.8 0.9 0.7 0.8 0.9 0.2 13 12 0.3 15 0.Б X., 10 dơ/dx, [pb] dơ/dx, [pb] X., > 0.8 X. < 0.8 102 10 H1 10 10 ---NLO $\frac{1}{2}$ NLO \times (1+ δ_{max}) PYTHIA × 1.2 0.5 ۵.1 0.2 0.3 0.4 0.5 0.7 0.1 0.2 0.3 0.4 0.5 0.5 0.7 X_P $\mathbf{X}_{\mathbf{P}}$

NLO describes data over basically all phase space within errors (jet scale!).
 PYTHIA with GRV-LO, NLO with GRV-HO as photon PDF.

JETS IN PHP: PSEUDORAPIDITIES etc.

Jet pseudorapidities:

- \rightarrow Sensitivity to momentum distributions of incoming hadrons.
- → (double-differential) measurements in η , E_T (or x_p).

PROMPT PHOTONS: PHP

... after the problems in DIS, how about PHP? direct+resolved contribution. \rightarrow access to p and y PDFs.

H1, 340 pb⁻¹, 2004-2007 data 5 < E_{Tγ} < 15 GeV, 0.1 < y < 0.7

Comparison of data

- to NLO (DGLAP) calculation (Fontannaz et al.)
- to k_T factorisation approach (Zotov et al.)

Both calculations undershoot data. Slightly improved situation for photon+jet requirement (like in DIS).

THE UNDERLYING EVENT

Resolved PHP: hadron-hadron-like

- \rightarrow phenomenon of underlying event!
- (soft) beam remnant interactions
- additional (semi)hard constituent scatterings (multi-parton interactions, MPI)
- initial and final state radiation etc.

Quantify: "Activity in transverse regions" Regions away from hard scattering products (jets) should be most sensitive to UE effects.

CDF experience:

- MPI models can be tuned to CDF data!
- But extrapolation to LHC not meaningful!

→ Important + theoretically challenging!

UE/MPI NECESSITY

¶ HERA measurements demonstrate necessity of UE/MPI

- Photoproduction dijets at HERA,
- H1: ZP C70 (1996) 17
- ZEUS: EPJ C1 (1998) 109

UE MODEL IMPLEMENTATIONS

¶ PYTHIA + MPI

- Various models (old / intermediate / new): differ wrt color flow, remnant treatment, showering initiators, shower mode, interleaving of ISR and MPI, ...
- simple overlap of hadrons or impact-parameter dependence
- Average number of interactions per event derived from regularised 2→2 cross-section and total cross-section; secondary interactions Sudakovsuppressed.

¶ HERWIG + JIMMY

- Based on eikonal model assuming matter distributions in colliding particles and an overlap function A(b).
- Assign 2→2 cross-section to all events, choose number of interactions according toprecalcuted probability distribution.

¶ More models:

- Sherpa: similar assumptions as in PYTHIA, module AMISIC++ for MPIs.
- Phojet: Not part of general purpose generator, limited use for HEP.

H1 ANALYSIS: MINIJETS IN DIS

¶ Measure for UE

- average number of low- p_T "mini" jets in different azimuthal regions as function of $p_{T,lead}$.

- Inclusive (dijet) sample in regions of Q^2 and η^{lab} (x_v).
- Data compared to PYTHIA, ARIADNE RAPGAP, ...

H1 data, 57.4pb⁻¹, 5<Q²<100 GeV². Jets: $p_T > 5$ GeV, minijets: $p_T > 3$ GeV. Dijets Azimuthal separation: > 140°.

Jet regions: PYTHIA (no MPI) okay! Transverse regions: MPI needed!

H1: DIJET SAMPLE

¶ Jet regions:

all models with and without UE/MPI describe data.

¶ Transverse regions

- data generally above the models.
- Some UE influence; MPI again needed to describe data.

Influence of MPI / necessity of its modelling demonstrated.

Underlying effects not very well understood. Pin down mechanism with data like these? Energy evolution?

ZEUS: MULTIJETS IN γ*p

¶ Measure for UE:

- 3- and 4-jet cross-sections.
- Jets 3, 4 generated by hard QCD radiation? MPI?

¶ Models for comparison:

- HERWIG 6.505 + JIMMY 4.0
- PYTHIA 6.206 + "simple" MPI model
- Also: NLO calculation (Klasen et al.) for 3jet case (effectively LO!)

ZEUS data, 121pb⁻¹, 0.2 < y < 0.85. Jets: $E_T > 6$ GeV, $|\eta| < 2.4$. High/low-mass region: $M_{nj} <> 50$ GeV Need MPI/UE simulations to correctly describe the data: HERWIG and PYTHIA without UE / MPI fail to describe data at low M_{nj}.

ZEUS 3- AND 4-JETS: $d\sigma/dx_v$

- Models without MPI suggest decreasing cross-sections with decreasing x_v .
- But for low masses large discrepancy with INCREASING data
 - → mechanism beyond direct+resolved as modelled in MC necessary.
- Even "direct" region ($x_v > 0.75$) dominated by resolved events (\leftrightarrow dijets!).
- Especially HERWIG+JIMMY describes data well.
- Note large systematic uncertainties: Model dependence

ZEUS MULTIJETS

$\P d\sigma/d\eta$ versus LO models:

- High-mass data described by all models.
- Best description of low-M data: HERWIG.
- MPI improve description at high η .

$\P d\sigma/dM3_i$ versus "NLO":

 Large MPI corrections (from models) at low masses! Large theo. uncertainties.

SUMMARY

¶ Jets in photoproduction:

- Possibility of many QCD tests (coupling, factorisation, perturbation theory, ...)
- Sensitivity to both photon and proton PDFs!
 → pPDF already improved using jet data (ZEUS-JET proton PDF).
- Direct part of data typically well described by NLO QCD calculations / LO models.
- Large (50%) differences between different γ PDFs \rightarrow potential to constrain?

¶ Prompt photon production:

- Alternative access to QCD issues; different systematics (hadronisation!)
- DIS: Models and (LO) calculations tend to undershoot data (factor 2).
- Photoproduction: Similar as in DIS. Photon+jet requirement helps a bit.

¶ Multi-parton interactions:

- Resolved photoproduction: Multiple parton Interactions possible!
- HERA data clearly indicate necessity for MPI contributions to models.
- HERA (low-energy) points helpful in identifying the underlying mechanism?

¶ Many HERA-II results to come!

- So far most results with limited HERA-I statistics!
- Many measurements limited by renorm. scale uncertainty! Need theoretical input!

JETS IN PHP: "OPTIMIZED" REGIONS

Regions of phase-space with particular sensitivity to PDFs (gluon):

- \rightarrow Isolate regions with large gluon contributions.
- \rightarrow direct / resolved to isolated influence of photon / proton PDFs.

Potential of these and similar data to further constrain the photon!

RESOLVED VERSUS DIRECT

Ratio R= σ (resolved)/ σ (direct) as fct of Q² in regions of mean E_T:

- Better understanding of resolved component at $Q^2 > 1$ GeV²?
- Data compared to HERWIG LO MC with two different photon PDFs, and to NLO.

CONFIRMATION: RESOLVED CONCEPT

Similar result from ZEUS:

Jet pseudorapidities:

- \rightarrow Sensitivity to momentum distributions of incoming hadrons.
- → double-differential measurements in η , E_T (or x_p).

NLO describes data well (small discrepancies in direct with both jets forward).
 Detailed ZEUS study: Large potential of data to constrain p and γ PDF.

Similar findings at ZEUS:

- → Large influence of photon PDF in use; often CJK describes best the trend of the data (but normalisation).
- \rightarrow Differences between different parametrisations up to 50%!

