

Current Limitations and Plans for CRYO System (arc and insertions) Brd HL-LHC Parameter and Lay-out Committee

Rob van Weelderen,

Cryogenic Group, Technology Department, CERN based on 2nd HL-LHC -- LARP meeting in Frascati (Nov 2012) of Laurent Tavian with the contribution of K. Brodzinski, G. Ferlin, U. Wagner

The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Content

- Overall HL-LHC layout
- Local and global cryo-limitation in Sectors
- Specific Inner Triplet cryo-limitations
- Cryogenic layout proposals at:
 - Point 1 and Point 5
 - Point 4
 - Point 7
- Specific studies and tests
- Schedule and conclusion

Overall HL-LHC layout

- HL-LHC cryo-upgrade:
 - 2 new cryoplants at P1 and P5 for high luminosity insertions
 - 1 new cryoplant at P4 for SRF cryomodules
 - New cooling circuits at P7 for SC links and deported current feed boxes
 - Cryogenic design support for cryo-collimators and 11 T dipoles at P3 and P7
- Existing cryoplant
- New HL-LHC cryoplant

Sector heat loads: local limitation

(valves

- Synchrotron radiation
- Image current
- Beam gas scattering

Qs

[W]

7.5

7.5

7.5

18

18

18

Qsr

[W]

18

34

27

0.11

0.20

0.16

0.42

0.53

9.8

7.8

11

11

39

37

Resistive heating

Nominal

Nominal

HL-LHC 25 ns

HL-LHC 50 ns

HL-LHC 25 ns

HL-LHC 50 ns

es, HX, piping,)											
	$ \qquad \qquad$										
	$ \qquad \qquad$										
$ \qquad \qquad$											
	$ \qquad \qquad$										
			nominal	25ns	50ns						
			1.15E+11	2.2E+11	3.5E+11						
			2808	2808	1404						
			ngth [m]	7.50E-02	7.50E-02	7.50E-02					
Qic	Qbgs	Qrh	Total	Locally installed	Local margin (e.g. for e-cloud)						
[W]	[W]	[W]	[W]	[W]	[W]	[W] [W/m per apertur					
19	0	0	44	255	211	2.0					
70	0	0	112	255	143	1.3					
89	0	0	123	255	132	1.2					
0.12	5.1	11	34	90	56	0.26					

90

90

51

53

0.24

0.25

Half-cell beam-

screens @ 4.6-20 K

Cell cold-masses

@ 1.9 K

Sector heat loads: global limitation

]			Total*	Globally	Global margin		Global margin		
			TOtal	installed	w/o load transfer		with load transfer		
		[W]	[W]	[W]	[W/m per aper.]	[W]	[W/m per aper.]		
	Sector beam-	Nominal	2597	7600	5003	0.87	10630	1.8	
	screens	HL-LHC 25 ns	6296	7600	1304	0.23	6243	1.1	
	@ 4.6-20 K	HL-LHC 50 ns	6951	7600	649	0.11	5850	1.0	
	Sactor cold massas	Nominal	975	2100	1125	0.19	0	0	
		HL-LHC 25 ns	1112	2100	988	0.17	0	0	
	@ 1.9 K	HL-LHC 50 ns	1060	2100	1040	0.18	0	0	

*: 54 half-cells + 1 LL inner triplet + 1 SC link

Specific present IT cryo-limitations

Point (status 25.03.2010)	Present Cryogenic power available for secondaries (W)	After LS1 Cryogenic power available for secondaries (W)				
L1	147	270				
R1	270	270				
L2	147	270				
R2	270	270				
L5	270	270				
R5	147	270				
L8	147	270				
R8	270	270				

Present Inner Triplets *have limitations* for extraction of secondaries due to:

- 1) Collapsed and repaired, with lower capacity, HeII two-phase heat exchanger (will not be consolidated)
- 2) Erroneous mounting of passive heating strips for excess liquid evaporation (will be consolidated in LS1)

Main components at Point 1 and 5

?: For Q5, Q6 and probable Q7+? 1.9 K or 4.5 K operation will influence the cryo QRL interface significantly
(1.9 K needs 2 jumpers with present QRL design hardware)

P1 & P5 layout 1: Matching section cooled with sector cryoplants

Q5, Q6 and probable Q7+? 1.9 K or 4.5 operation

Note: Cryo for Sector- and LSS-powering are combined except for IT & D1

P1 & P5 layout 2: Matching section cooled with inner triplet cryoplants

Q5, Q6 and probable Q7+? 1.9 K or 4.5 operation

Note: Cryo for Sector- and LSS-powering are as well separated (links and DFBA / DFBX leads re-arrangement)

LSS specific magnet cryo-layout issues

- Stand-alone magnets 1.9 K cooling QRL interface requires more space than 4.5 K cooling in with present QRL / jumpers / Service modules design (either 2 service modules, twin-DFBX-like module, both with QRL extensions)
- D2-Crab cavities-Q4 layout would need 3 jumpers if Crab cavities cryostat are kept independent (cold / warm transition) from neighbouring magnets
- IT cooling arrangement under study with TE-MSC-LMF, TE-MSC-CMI (# of jumpers, D1 and/or CP conduction cooled, link cooling, phase-separator placing, piping sizing, beam-screen)

In the light of the above, adapting the existing QRL to the HL-LHC LSS needs might be possible but looks increasingly difficult

Comparison of layouts at P1 and P5

	Advantage	Drawback
Layout 1: MS with sector	Corresponds to the CtC baseline (minor modification on the existing QRL, i.e. only new jumper extensions foreseen)	 but reuse of existing QRL if the new MS layout largely differ from the existing one (operating temperature and/or new equipment (D2, CC, Q4, Q5, Q6? Q7+?)) → could be also expensive and space consuming and maybe not feasible!
Layout 2: MS wit IT	Optimisation of the distribution and space with respect to the HL-LHC need. Allow the upgrade of "A" boxes during LS2 Complete sectorization of MS + IT allowing mechanical intervention without warm-up of the two adjacent sectors (but interconnection, if any, must be designed accordingly)	Increase of the CtC (~1 km of compound transfer line with ~20 service modules) → additional cost (8-10 MCHF tbc)

Layout 2 as future baseline? Decision needed

Interconnection for partial redundancy

Present redundancy baseline w/o interconnection (IB) in between cryoplants !

"Partial" redundancy:

 - cold standby during technical and Xmas stops
 - low beam-intensity operation in case of major breakdown on the new cryoplant (full nominal redundancy not possible)
 - what about redundancy with detector cryogenics ? Cost increase

Interconnection box (IB)

Up to 10 cryogenic valves to be integrated in the tunnel (space ?)

 \rightarrow Volume in between valves used as controlled volume for safe cryo-consignation

ightarrow Valve DNs depend on the level of needed redundancy

Space requirement in caverns and shafts

Minimum CCB requirement in cavern

Number of cold compressor trains

P4 Layout: new cryogenics for SRF module

P4 cryogenic process & flow diagram

P7 Layout: Deported current feed boxes

- New cooling circuits for SC links and deported current feed boxes
 - Extension of the warm recovery lines to the TZ76
 - Cryogenic design of new SC links and current feed boxes.

Specific cryogenic studies and tests (or what differ from LHC design ?)

- Cooling circuits for large heat deposition:
 - on 1.9 K cold masses up to 10 W/m
 - \rightarrow heat extraction from SC cables and quench energy margin
 - \rightarrow Generic heat flow in magnet cross section
 - on beam-screens up to 13-20 W/m (image current effect ?)
- Cooling of HTS SC links and current feed boxes
- Cooling and pressure relief of crab-cavities
- Validation tests on SC link, crab-cavities, magnets, beam screens...
- Reactivation of the Heat Load Working Group
- Quench containment and recovery (cold buffering ?)
- Large-length cable (150 m) for cold-compressor controls and drives
- Large capacity (750-1500 W) sub-cooling heat exchangers
- Larger turndown capacity factor on 1.8 K refrigeration cycle: up to 10?

-rom

Schedule

		2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
	LHC schedule		LS	51				LS2				LS	53
New Cryo at P4	Studies & design Tendering Fabrication Installation Commissioning				,								
Cold powering	Studies & design Tendering Fabrication Installation Commissioning					P7 P1&P (type /	★ 5 A)			P1 (ty	&P <mark>5</mark> pe X)		
New cryo at P1 and P5	Studies & design Tendering Fabrication Installation Commissioning									*			

★ : Freeze of heat load requirement

Conclusion

- Several HL-LHC cryogenic layouts have been presented with alternatives for cooling sectorization and redundancy → decision needed for main sectorization option, additional study needed on detailed options
- Preliminary heat load estimate is defined :

 \rightarrow local and global limitation for sector cryogenics are compatible with the proposed HL-LHC beam parameter.

 \rightarrow the HLWG to refine and follow the heat load inventory have to be reactivated.

- Specific cryogenic studies and tests are defined → some of them have already started
- Integration study of new underground equipment must be done to validate:

 \rightarrow layout and interface requirements of all LSS magnet systems as function of their operation temperature

 \rightarrow the possible reuse of part of the existing distribution system (QRL)

 \rightarrow the underground space availability for the cold compressor boxes at

cern.ch