

[Prelim] IR Layout of Crab Cavities

Rama Calaga, HL-LHC PLC Meeting, Jan 2013

(Material derived from Crab Cavity Meetings)

LHC Constraints

Beam requirements, Optics & Aperture, Space constraints, Cryogenics, Infrastructure, Integration & Safety

Freq., Temp, RF inputs & outputs, He-vessel & Tuner, Shielding, Instrumentation

Vacuum vessel & layout, Cryogenic interfaces RF interfaces (power etc.) Transmission lines Controls & Feedback

Cavity will undergo full surface treatment in Feb \rightarrow Improved performance

Baseline Crab Scheme

Some Basic Parameters

Voltage = 3.3 MV/cavity (3 cavities /module)

Frequency = 400 MHz

 $R/Q \sim 300-900 \Omega$, $Qext = 5 \times 10^5 - 1 \times 10^6$

RF power source = 40-80 kW (< 15 kW nominal)

Cavity tuning/detuning $\sim \pm 1.5$ kHz (or multiples of it)

Beam current $\sim 1.1 \text{ A}$

Functional specification document for Crab Cavities by end of Jan2013

Point 5, CMS

Example Module Layout

2nd beam pipe in cryostat vacuum

Single cavity cryostat or multi-cavity cryostat

Multi-cavity cryostat \rightarrow each cavity will only have common cryostat vacuum

ATS Optics, IP5

Asymmetric β -slope left/right across cavities

Optics Layout Proposal

R. de Maria et al. LHC-CC11

Approx 1.5 MV ($\frac{1}{2}$ cavity) imbalance between B1/B2 (Staggering efficient ? technical complication for common cryostat ?)

Present Design Status (3 Cavities)

Tuner transverse plane

Tunnel Cross Section

Cryostat Cross Section (SPS)

S. Pattalwar, T. Jones (4Rod Cavity)

LHC 3-cavity/beam (~3.3m) layout could look similar

Simplified cryostat for easy assembly/access/maintenance 3-cavity LHC system would be a natural extension

Comment: Staggered configuration may make 2K cryo piping complex

One/Two Cavity Cryostat Proposal

Niowave Inc. (RF Dipole Cavity)

^{~2.5}m

Heat Load, $\underline{1}^{\underline{st}}$ Estimates (2K)

	/Cavity	/IP (12 Cav)
Static [W]	0.6	7.2
Radiation	0.2	2.4
Support	0.1	1.2
Couplers	0.1	1.2
Tuner	0.1	1.2
Instrumentation	0.1	1.2
Dynamic	3.9	54.8
Cavities	2.5	30
Couplers	0.2	2.4
HOM Couplers	0.2	2.4
Beam	1.0	20

Derived from K. Brodzinski (at Crab Engineering Meeting)

With safety margin 1.5 \rightarrow 100 watts/IP

Heat loads @4K/80K to be detailed from cryomodule design

In both scenarios, service module close to crab location could be envisioned Jumpers to feed to cryomodule (# depending on the # cav/cryomodule)

Cryogenic controls in the experimental cavern (\sim 155m)

LHC Prototype Example

Cryo Layout Proposal (SPS)

S. Pattalwar, T. Jones (4Rod Cavity)

LHC-RF in UX45

Power system likely more compact for crab cavities

Crab RF Power

RF Power/Cavity

Input power 40-80kW Tetrode at 400 MHz

Prototypes exist for SPS (40kW), newer amplifier for LHC (? m²)

Short transmission line preferred \rightarrow Amplifiers in the closest gallery

Circulator & passive damping (perhaps both for safety)

RF Driver & Peripherals

E. Montesinos

Driver and other inputs either in a shield gallery or surfaceNew 500W SSA driver is ordered (SM18 tests)HV power supply and related controls on the surface bldg.Other peripherals: Grid PS, demineralized water for cooling, controls

Main Constraint: Driver close to LLRF & LLRF close to cavity (<1 μs total loop delay)

Driver: 2.5kW (6×500W)

Drivers option with 6 x 500 W SSA

HV Power Supply (SPS Tetrodes)

Water for cooling amplifiers

LLRF/Cavity

P. Baudrenghien

- RF Feedback Loop for noise and beam loading control
- TX Polar Loop to reduce the TX noise and stabilize its gain/phase shift
- Tuner Loop detune or retune cavity during inj/ramp/physics.
- Field Set Point for precise control of the cavity field.

RF Control Layout

LHC Example

Space Required (6 x RF Power+LLRF)

E. Montesinos

6 x 40 kW power transmitters / IP side

Summary Table

Cryomodule	Tunnel	< 10 m/IP side	6 cavities /IP side
Cryo Jumpers	Tunnel	Integrated with QRL	6jumpers /IP side
RF Amplifiers	Crab Cavern1	3m × 10m	6 Tetrodes
Circulators & Loads	Crab Cavern1	-	6 /IP side
Drivers & Controls	Crab Cavern2	3m × 4m	6 racks /IP side
LLRF Racks	Crab Cavern2	1.5m × 9m	6+1 racks /IP side
LLRF Central Rack	Exp. Cavern	1.5m × 6m	4+1 racks /IP side
Slow Controls	Exp. Cavern	2m × 4m	2 Racks
Remote Alignment	Exp. Cavern	-	-
HV Supply	Surface Bldg.	4m × 16m	6 Tetrodes/IP side

Crab Cavern: Nearest shielded location to the crab cavities (< 1 μ s round-trip (including tetrode-circulator-driver-cable group delay, LLRF latency: 700ns) Therefore only~40m cabling distance max to the cavity!

Service Gallery similar to P4 <u>ideal</u>

Point 1, RR17/RR13

Can we have space here ? What about radiation shielding (May not be compatible with LLRF, not hermetic)

Point 5, UJ53/57

Nearest equipment space $100m(\sim 0.4 \mu s)$ Round trip loop delay (still acceptable)

Instrumentation Needs

Crabbing effect cannot be seen outside the IR region with left/right compensation. Luminosity & RF are best diagnostics inside the IR

Precise closed orbit measurement for RF phase & beam centering using amplitude (KEKB example, see below)

Headtail monitor & streak camera \rightarrow Present location & number of devices to be studied w.r.t to the crab cavity phase-adv.

Instrumentation Needs

Halo monitoring & fast beam loss monitors \rightarrow machine protection (option for faster integration times/diamond loss monitors)

Wire scanners/BSRT for emittance measurements

Other fancy devices (?)

CVD Diamond Detectors (Fast Beam Loss Monitors)

B. Dehning, CERN

Digital Micro-Mirrors (Beam Halo-Monitoring)

A. Fischer, SLAC

Summary Thoughts

Cavity & cryomodule equipment seem compatible with the present constraints Longitudinal 10m/6-cavities and Transversely 1m in diameter

Cryogenics and associated equipment is being worked out A service module close to cavities on the QRL is preferred No crab specific issues so far identified from the layout yet

RF power, drivers & controls have to be in a shielded area + close to the cavities AP'oint4 like'ayout with a parallel access cavern would be <u>ideal</u> Alternative solutions to be studied

Additional Items (To be addressed by RF) Operation w/o one TX (or cavity) out of 6 ? Impedance tolerable ? Else \rightarrow Passive damping system necessary & lower Q₁

Maximum allowable beam offset: 1mm for the full energy cycle ? Power

Beam 1

A1: β -functions

Name	Location	β_x	β_y	D_x	α_x	k_y				
	$[\mathrm{km}]$	[m]	[m]	[m]	[m]	[m]				
ACFA.L5B1	6505.87	3469.54	2915.04	0.097	-17.22	-46.69				
ACFB.L5B1	6508.47	3559.66	3162.88	0.097	-17.44	-48.63				
ACFC.L5B1	6511.07	3650.94	3420.84	0.097	-17.67	-50.58				
ACFC.R5B1	6819.37	3290.97	3604.89	-0.097	49.61	17.56				
ACFB.R5B1	6821.97	3038.07	3514.18	-0.097	47.66	17.33				
ACFA.R5B1	6824.57	2795.28	3424.63	-0.097	45.72	17.11				
ACFA.L1B1	19835.46	3469.54	2915.04	0.097	-17.22	-46.69				
ACFB.L1B1	19838.06	3559.66	3162.88	0.097	-17.44	-48.63				
ACFC.L1B1	19840.66	3650.94	3420.84	0.097	-17.67	-50.58				
ACFC.R1B1	20148.96	3290.97	3604.89	-0.097	49.61	17.56				
ACFB.R1B1	20151.56	3038.07	3514.18	-0.097	47.66	17.33			Daar	\sim
ACFA.R1B1	20154.16	2795.28	3424.63	-0.097	45.72	17.10			Dear	<u>n z</u>
			Name		Location	β_x	β_y	D_x	α_x	α_y
			Name		Location [km]	β_x [m]	β_y [m]	D_x [m]	α_x [m]	α_y [m]
			Name ACFA.	L5B2	Location [km] 6504.87	$\frac{\beta_x}{[m]}$ 2795.28	β_y [m] 3424.63	D_x [m] -0.097	$\frac{\alpha_x}{[m]}$ -45.72	$\frac{\alpha_y}{[m]}$ -17.11
			Name ACFA. ACFB.	L5B2 L5B2	Location [km] 6504.87 6507.47	$egin{array}{c} \beta_x \ [m] \ 2795.28 \ 3038.07 \ \end{array}$	$egin{array}{c} \beta_y \ [m] \ 3424.63 \ 3514.18 \ \end{array}$	$\begin{array}{c} {\rm D}_{x} \\ [{\rm m}] \\ -0.097 \\ -0.097 \end{array}$	α_x [m] -45.72 -47.66	α_y [m] -17.11 -17.33
			Name ACFA. ACFB. ACFC.	L5B2 L5B2 L5B2	Location [km] 6504.87 6507.47 6510.07	$\begin{array}{c} \beta_x \\ [m] \\ 2795.28 \\ 3038.07 \\ 3290.97 \end{array}$	$\begin{array}{c} \beta_y \\ [m] \\ 3424.63 \\ 3514.18 \\ 3604.89 \end{array}$	$\begin{array}{c} {\rm D}_{x} \\ [{\rm m}] \\ -0.097 \\ -0.097 \\ -0.097 \end{array}$	α_x [m] -45.72 -47.66 -49.61	α_y [m] -17.11 -17.33 -17.56
			Name ACFA. ACFB. ACFC. ACFC.	L5B2 L5B2 L5B2 R5B2	Location [km] 6504.87 6507.47 6510.07 6818.37	$\begin{array}{c} \beta_x \\ [m] \\ 2795.28 \\ 3038.07 \\ 3290.97 \\ 3650.94 \end{array}$	$\begin{array}{r} \beta_y \\ [m] \\ 3424.63 \\ 3514.18 \\ 3604.89 \\ 3420.84 \end{array}$	$\begin{array}{c} \mathrm{D}_{x} \\ \mathrm{[m]} \\ -0.097 \\ -0.097 \\ -0.097 \\ 0.097 \end{array}$	$\begin{array}{c} \alpha_x \\ [m] \\ -45.72 \\ -47.66 \\ -49.61 \\ 17.67 \end{array}$	$\begin{array}{c} \alpha_y \\ [m] \\ -17.11 \\ -17.33 \\ -17.56 \\ 50.58 \end{array}$
			Name ACFA. ACFB. ACFC. ACFC. ACFB.	L5B2 L5B2 L5B2 R5B2 R5B2	Location [km] 6504.87 6507.47 6510.07 6818.37 6820.97	$\begin{array}{c} \beta_x \\ [m] \\ 2795.28 \\ 3038.07 \\ 3290.97 \\ 3650.94 \\ 3559.66 \end{array}$	$\begin{array}{c} \beta_y \\ [m] \\ 3424.63 \\ 3514.18 \\ 3604.89 \\ 3420.84 \\ 3162.88 \end{array}$	$\begin{array}{c} {\rm D}_{x} \\ [{\rm m}] \\ -0.097 \\ -0.097 \\ -0.097 \\ 0.097 \\ 0.097 \end{array}$	$\begin{array}{c} \alpha_x \\ [m] \\ -45.72 \\ -47.66 \\ -49.61 \\ 17.67 \\ 17.44 \end{array}$	$\begin{array}{c} \alpha_y \\ [m] \\ -17.11 \\ -17.33 \\ -17.56 \\ 50.58 \\ 48.63 \end{array}$
			Name ACFA. ACFB. ACFC. ACFC. ACFB. ACFA.	L5B2 L5B2 L5B2 R5B2 R5B2 R5B2	Location [km] 6504.87 6507.47 6510.07 6818.37 6820.97 6823.57	$\begin{array}{c} \beta_x \\ [m] \\ 2795.28 \\ 3038.07 \\ 3290.97 \\ 3650.94 \\ 3559.66 \\ 3469.54 \end{array}$	$\begin{array}{c} \beta_y \\ [m] \\ 3424.63 \\ 3514.18 \\ 3604.89 \\ 3420.84 \\ 3162.88 \\ 2915.04 \end{array}$	$\begin{array}{c} {\rm D}_x \\ [{\rm m}] \\ -0.097 \\ -0.097 \\ -0.097 \\ 0.097 \\ 0.097 \\ 0.097 \end{array}$	$\begin{array}{c} \alpha_x \\ [m] \\ -45.72 \\ -47.66 \\ -49.61 \\ 17.67 \\ 17.44 \\ 17.22 \end{array}$	$\begin{array}{c} \alpha_y \\ [m] \\ -17.11 \\ -17.33 \\ -17.56 \\ 50.58 \\ 48.63 \\ 46.70 \end{array}$
			Name ACFA. ACFB. ACFC. ACFC. ACFB. ACFA. ACFA.	L5B2 L5B2 L5B2 .L5B2 .R5B2 .R5B2 .R5B2 .R5B2 L1B2	Location [km] 6504.87 6507.47 6510.07 6818.37 6820.97 6823.57 19834.16	$\begin{array}{c} \beta_x \\ [m] \\ 2795.28 \\ 3038.07 \\ 3290.97 \\ 3650.94 \\ 3559.66 \\ 3469.54 \\ 2795.28 \end{array}$	$\begin{array}{c} \beta_y \\ [m] \\ 3424.63 \\ 3514.18 \\ 3604.89 \\ 3420.84 \\ 3162.88 \\ 2915.04 \\ 3424.63 \end{array}$	$\begin{array}{c} {\rm D}_x \\ [{\rm m}] \\ -0.097 \\ -0.097 \\ -0.097 \\ 0.097 \\ 0.097 \\ 0.097 \\ -0.097 \\ -0.097 \end{array}$	$\begin{array}{c} \alpha_x \\ [m] \\ -45.72 \\ -47.66 \\ -49.61 \\ 17.67 \\ 17.44 \\ 17.22 \\ -45.72 \end{array}$	$\begin{array}{c} \alpha_y \\ [m] \\ -17.11 \\ -17.33 \\ -17.56 \\ 50.58 \\ 48.63 \\ 46.70 \\ -17.12 \end{array}$
			Name ACFA. ACFB. ACFC. ACFC. ACFB. ACFA. ACFA. ACFB.	L5B2 L5B2 L5B2 .R5B2 .R5B2 .R5B2 .R5B2 L1B2 .L1B2	Location [km] 6504.87 6507.47 6510.07 6818.37 6820.97 6823.57 19834.16 19836.76	$\begin{array}{c} \beta_x \\ [m] \\ 2795.28 \\ 3038.07 \\ 3290.97 \\ 3650.94 \\ 3559.66 \\ 3469.54 \\ 2795.28 \\ 3038.07 \end{array}$	$\begin{array}{c} \beta_y \\ [m] \\ 3424.63 \\ 3514.18 \\ 3604.89 \\ 3420.84 \\ 3162.88 \\ 2915.04 \\ 3424.63 \\ 3514.18 \end{array}$	$\begin{array}{c} {\rm D}_x \\ [{\rm m}] \\ -0.097 \\ -0.097 \\ -0.097 \\ 0.097 \\ 0.097 \\ 0.097 \\ -0.097 \\ -0.097 \\ -0.097 \end{array}$	$\begin{array}{r} \alpha_x \\ [m] \\ -45.72 \\ -47.66 \\ -49.61 \\ 17.67 \\ 17.44 \\ 17.22 \\ -45.72 \\ -47.66 \end{array}$	$\begin{array}{c} \alpha_y \\ [m] \\ -17.11 \\ -17.33 \\ -17.56 \\ 50.58 \\ 48.63 \\ 46.70 \\ -17.12 \\ -17.33 \end{array}$
			Name ACFA. ACFB. ACFC. ACFC. ACFB. ACFA. ACFA. ACFB. ACFB.	L5B2 L5B2 L5B2 R5B2 R5B2 R5B2 L1B2 L1B2 L1B2	Location [km] 6504.87 6507.47 6510.07 6818.37 6820.97 6823.57 19834.16 19836.76 19839.36	$\begin{array}{c} \beta_x \\ [m] \\ 2795.28 \\ 3038.07 \\ 3290.97 \\ 3650.94 \\ 3559.66 \\ 3469.54 \\ 2795.28 \\ 3038.07 \\ 3290.97 \\ \end{array}$	$\begin{array}{c} \beta_y \\ [m] \\ 3424.63 \\ 3514.18 \\ 3604.89 \\ 3420.84 \\ 3162.88 \\ 2915.04 \\ 3424.63 \\ 3514.18 \\ 3604.89 \\ \end{array}$	$\begin{array}{c} \mathrm{D}_{x} \\ [\mathrm{m}] \\ -0.097 \\ -0.097 \\ -0.097 \\ 0.097 \\ 0.097 \\ 0.097 \\ -0.097 \\ -0.097 \\ -0.097 \\ -0.097 \\ -0.097 \end{array}$	$\begin{array}{c} \alpha_x \\ [m] \\ -45.72 \\ -47.66 \\ -49.61 \\ 17.67 \\ 17.44 \\ 17.22 \\ -45.72 \\ -47.66 \\ -49.61 \end{array}$	$\begin{array}{r} \alpha_y \\ [m] \\ -17.11 \\ -17.33 \\ -17.56 \\ 50.58 \\ 48.63 \\ 46.70 \\ -17.12 \\ -17.33 \\ -17.56 \end{array}$
			Name ACFA. ACFB. ACFC. ACFC. ACFB. ACFA. ACFA. ACFA. ACFB. ACFC.	L5B2 L5B2 L5B2 R5B2 R5B2 R5B2 L1B2 L1B2 L1B2 L1B2 R1B2	Location [km] 6504.87 6507.47 6510.07 6818.37 6820.97 6823.57 19834.16 19836.76 19839.36 20147.66	$\begin{array}{c} \beta_x \\ [m] \\ 2795.28 \\ 3038.07 \\ 3290.97 \\ 3650.94 \\ 3559.66 \\ 3469.54 \\ 2795.28 \\ 3038.07 \\ 3290.97 \\ 3290.97 \\ 3650.94 \end{array}$	$\begin{array}{r} \beta_y \\ [m] \\ 3424.63 \\ 3514.18 \\ 3604.89 \\ 3420.84 \\ 3162.88 \\ 2915.04 \\ 3424.63 \\ 3514.18 \\ 3604.89 \\ 3420.84 \\ \end{array}$	$\begin{array}{c} \mathrm{D}_{x} \\ [\mathrm{m}] \\ -0.097 \\ -0.097 \\ -0.097 \\ 0.097 \\ 0.097 \\ 0.097 \\ -0.097 \\ -0.097 \\ -0.097 \\ -0.097 \\ -0.097 \\ 0.097 \end{array}$	$\begin{array}{c} \alpha_x \\ [m] \\ -45.72 \\ -47.66 \\ -49.61 \\ 17.67 \\ 17.44 \\ 17.22 \\ -45.72 \\ -45.72 \\ -47.66 \\ -49.61 \\ 17.67 \end{array}$	$\begin{array}{c} \alpha_y \\ [m] \\ -17.11 \\ -17.33 \\ -17.56 \\ 50.58 \\ 48.63 \\ 46.70 \\ -17.12 \\ -17.33 \\ -17.56 \\ 50.58 \end{array}$
			Name ACFA. ACFB. ACFC. ACFC. ACFB. ACFA. ACFA. ACFB. ACFC. ACFC. ACFC.	L5B2 L5B2 L5B2 R5B2 R5B2 R5B2 L1B2 L1B2 L1B2 R1B2 R1B2	Location [km] 6504.87 6507.47 6510.07 6818.37 6820.97 6823.57 19834.16 19836.76 19839.36 20147.66 20150.26	$\begin{array}{c} \beta_x \\ [m] \\ 2795.28 \\ 3038.07 \\ 3290.97 \\ 3650.94 \\ 3559.66 \\ 3469.54 \\ 2795.28 \\ 3038.07 \\ 3290.97 \\ 3650.94 \\ 3559.66 \end{array}$	$\begin{array}{r} \beta_y \\ [m] \\ 3424.63 \\ 3514.18 \\ 3604.89 \\ 3420.84 \\ 3162.88 \\ 2915.04 \\ 3424.63 \\ 3514.18 \\ 3604.89 \\ 3420.84 \\ 3162.88 \end{array}$	$\begin{array}{c} \mathrm{D}_{x} \\ [\mathrm{m}] \\ -0.097 \\ -0.097 \\ -0.097 \\ 0.097 \\ 0.097 \\ 0.097 \\ -0.097 \\ -0.097 \\ -0.097 \\ -0.097 \\ 0.097 \\ 0.097 \\ 0.097 \\ 0.097 \end{array}$	$\begin{array}{c} \alpha_x \\ [m] \\ -45.72 \\ -47.66 \\ -49.61 \\ 17.67 \\ 17.44 \\ 17.22 \\ -45.72 \\ -45.72 \\ -47.66 \\ -49.61 \\ 17.67 \\ 17.44 \end{array}$	$\begin{array}{c} \alpha_y \\ [m] \\ -17.11 \\ -17.33 \\ -17.56 \\ 50.58 \\ 48.63 \\ 46.70 \\ -17.12 \\ -17.33 \\ -17.56 \\ 50.58 \\ 48.63 \\ 48.63 \end{array}$