

Measurement of Higgs boson properties in ATLAS

VALERIO IPPOLITO

Università di Roma "La Sapienza" INFN Sezione di Roma

on behalf of the ATLAS collaboration

Motivation

we discovered a new particle at low mass

many handles to investigate its nature

- **observed yield** (signal strength measurements)
- 🔴 probe Higgs couplings
- **o** spin-parity (determine J^{PC} state)

following results are based on full 2011+2012 dataset (20.7 fb⁻¹ at 8 TeV, 4.8 fb⁻¹ at 7 TeV) for $H \rightarrow \gamma \gamma$, $H \rightarrow WW$, $H \rightarrow ZZ \rightarrow 4\ell$ (still 10 fb⁻¹ at 8 TeV to be analyzed for other channels)

Mass measurement

if it's the SM Higgs boson, its mass m_H is the (only) free parameter of the theory

- measurement dominated by high-resolution channels
- * using full 2011+2012 pp dataset (20.7 fb⁻¹ at 8 TeV, 4.6÷4.8 fb⁻¹ at 7 TeV)

signature: peak in m_{YY} distribution combination of 14 categories (S/B ~ 0.01÷0.6, ~355 signal events at 8 TeV) main systematics from photon energy scale uncertainty

signature: peak in m4e distribution

4 final states; lower signal yield but high purity (S/B~1.4, ~27 signal events) measure dominated by muon channels ($\sigma(m_{4\mu}) \sim 1.6$ GeV, $\sigma(m_{4e}) \sim 2.4$ GeV)

mass is extracted from profile likelihood fit to data combine together individual channels, test their compatibility

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

MH

Results

YY: 126.8±0.2(stat)±0.7(sys) GeV
4
$$\ell$$
: 124.3^{+0.6}-0.5(stat)^{+0.5}-0.3(sys) GeV
combined: 125.5±0.2(stat)^{+0.5}-0.6(sys) GeV

 $\Lambda(m_H) = \frac{L(m_H, \hat{\hat{\mu}}_{\gamma\gamma}(m_H), \hat{\hat{\mu}}_{4\ell}(m_H), \hat{\hat{\theta}}(m_H))}{L(\hat{m}_H, \hat{\mu}_{\gamma\gamma}, \hat{\mu}_{4\ell}, \hat{\theta})}$

• main correlation from e/γ energy scale systematics • individual measurements compatible at 1.5% (2.4 σ) level

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

MH

Signal strength

once m_H is measured, SM cross sections are uniquely determined

- * we can test the agreement with SM measuring deviations from predicted yields
- * assume $m_H = 125.5$ GeV and define a signal strength μ such as

 $N_{tot} = \mu \cdot N_{sig} + N_{bkg} \qquad (N_{tot} > 0)$

 combine measurements from all decay channels result is stable within ~4% for ±1 GeV variations of assumed m_H

 $\mu = 1.30\pm0.13(\text{stat})\pm0.14(\text{sys})$ 9% agreement with SM (μ =1)

Production processes

different decay channels have contributions from common production modes

→ e.g.: VBF production accounts for 7% of the total $H \rightarrow ZZ \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ cross-sections

we can separate them passing from a single μ to $\mu_{ggF+ttH}$ and μ_{VBF+VH}

* use analysis sub-categories with ggF/VBF/VH-enriched samples (e.g. $N_{jet}(VBF) \ge 2$)

-2 In A

- * in the SM, $\mu_{ggF+ttH}$ scales with top Yukawa coupling
- * in the SM, μ_{VBF+VH} scales with WH/ZH couplings

comparison between channels needs ratios

in this way branching ratio factor B/B_{SM} cancels out

alternative "model-independent" approach: study ratio of branching ratio factors $\rho_{YY/ZZ} = 1.1^{+0.4}$ -0.3 $\rho_{YY/WW} = 1.7^{+0.7}$ -0.5 $\rho_{ZZ/WW} = 1.6^{+0.8}$ -0.5 μvbf+vh/μggf+tth ratio is 1.2^{+0.7}-0.5 (SM: 1) 14 ATLAS Preliminary profiling μ_{VH} : $\sqrt{s} = 7 \text{ TeV}: \int \text{Ldt} = 4.6-4.8 \text{ fb}^{-1}$ 12 3.1 σ evidence of √s = 8 TeV: ∫Ldt = 13-20.7 fb⁻¹ **VBF** production 10 m_H = 125.5 GeV — combined 8 ---- SM expected → 77^(*) → 4| $\rightarrow WW^{(*)} \rightarrow hh$ 6 2 0^{LLL} -0.5 0 0.5 1.5 2 2.5 3.5 3 6 $\mu_{VBF+VH} / \mu_{ggF+ttH}$

Coupling measurement

probe Higgs boson couplings under a LO tree level motivated framework

- * assume that all observed signals originate from a single resonance at 125.5 GeV
- * zero-width approximation: $(\sigma \times BR)(ii \rightarrow H \rightarrow ff) = \sigma_{ii} \cdot \Gamma_{ff}/\Gamma_{H}$
- * same lagrangian structure as in the SM (only modifications in coupling strengths)

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/HiggsLightMass

fit for coupling scale factors κ_{g^2}

example:

$$(\sigma \times BR)(gg \rightarrow H \rightarrow \gamma\gamma) = \sigma_{SM}(gg \rightarrow H) \cdot BR_{SM}(H \rightarrow \gamma\gamma) \cdot \kappa_{g^{2}} \cdot \kappa_{\gamma^{2}}/\kappa_{H^{2}}$$

 \searrow

 κ_{g^2} and κ_{Y^2} can be expressed in terms of coupling scale factors associated to all other particles contributing to SM loops

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

in the SM, ggH and $H{\rightarrow}\gamma\gamma$ are loop-induced

1. assume only SM particles contribute to these loops

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

W/Z couplings

SM requires identical coupling scale factors for W and Z

- direct test of custodial symmetry
- strong constraint from LEP measurements

1. assume only SM particles contribute to ggH/Hyy loops 2. decouple possible new physics contribution in $\gamma\gamma$

Probing BSM contributions

new particles can contribute either in loops or in new final states

- assume SM tree-level coupling scale factors ($\kappa_i = 1$) *
- fit for effective coupling scale factors κ_g and κ_Y *

Кg -2 In A(B ATLAS Preliminary ATLAS Preliminary SM $[\kappa_{\gamma}, \kappa_{g}, B_{i,u}]$ 2.2 $\sqrt{s} = 7 \text{ TeV}, \int \text{Ldt} = 4.6-4.8 \text{ fb}^{-1}$ √s = 7 TeV, ∫Ldt = 4.6-4.8 fb⁻¹ × Best fit - Observed √s = 8 TeV, ∫Ldt = 13-20.7 fb 68% CL √s = 8 TeV, ∫Ldt = 13-20.7 fb⁻¹ -- SM expected 95% CL 1.8 1.6 1.4 1.2 X 1⊦ 0.8 0.6 0.9 1.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.2 1.3 1.4 1.5 1.6 B_{i.u} κ, $K_g = 1.08 \pm 0.14$ BRinv., undet. < 0.33 (< 0.6 @ 95%CL) $K_{Y} = 1.23^{+0.16}$ -0.13 $K_g = 1.08^{+0.32} - 0.14$ direct search ZH(→inv): BR<0.65 @ 95%CL $K_{\rm Y} = 1.24^{+0.16}$ -0.14 5/10% compatibility with SM (1,1[,1])Valerio Ippolito - Higgs Properties at ATLAS (May 2)

2. allow for invisible/undetectable final states

Summary

many tested benchmark models

- common assumption: single resonance
 with SM-like tensor structure, zero width
- remark: various scenarios are correlated (based on same experimental data!)

no significant deviation from Standard Model prediction

compatibility with SM at 5÷10% level

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

Spin-parity measurement

J^{PC} state influences final state kinematic distributions

e.g.: in $H \rightarrow ZZ \rightarrow 4\ell$, dilepton invariant masses and 5 production/decay angles

the idea: pair-wise test of different specific scenarios against SM o⁺

- * $\gamma\gamma$, WW, ZZ: test 2⁺ minimal coupling model with different gg/qq production fractions
- ZZ: test also o⁻, 1⁺, 1⁻, 2⁻

approach: build discriminant using input sensitive to different spin-parity hypotheses

- $H \rightarrow \gamma \gamma$: use $|\cos(\theta^*)|$ distribution (m_{YY} for S/B separation)
- H \rightarrow WW: train two BDT classifiers (o⁺ vs bkg, 2⁺ vs bkg) using m_{ll}, p_{Tll}, $\Delta \phi_{ll}$, m_T
- O H→ZZ→4ℓ: multivariate discriminant built using full 7D final state information (two approaches: matrix element technique and BDT)

discriminant distributions used to build test statistics $Q = \log (L(o^+)/L(J^P))$ CLs method: $CL_s(J^P) = p_0(J^P) / (1 - p_0(o^+))$

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

Discriminating hypotheses

Results

combination: exclude 2⁺ model against o⁺ at more than 99% CL

all combinations of qq/gg production excluded as well

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

H→ZZ→4ℓ channel alone: exclude o⁻, 1⁺, 1⁻ at more than 96.9% CL test of 2⁻ against o⁺ still inconclusive

Conclusions

- $m_{\rm H} = 125.5 \pm 0.2 (\text{stat})^{+0.5} 0.6} (\text{sys}) \text{ GeV}$
- µ = 1.30±0.13(stat)±0.14(sys)
- $\mu_{VBF+VH}/\mu_{ggF+ttH} = 1.2^{+0.7}-0.5$
 - 3.1 σ evidence for VBF production
- couplings consistent with SM expectation
- spin-parity studies
 - new boson is compatible with SM J^{PC}=0⁺
 - excluded o⁻, 1⁺, 1⁻, 2⁺ specific scenarios against SM at more than 96.9% CL
- perspectives
 - update fermion channels to full data sample
 - optimization of coupling measurement in individual channels
 - probe CP admixtures

Bibliography

Individual channels

- ATLAS-CONF-2013-013 $(H \rightarrow ZZ \rightarrow 4\ell)$
- ATLAS-CONF-2013-012 $(H \rightarrow \gamma \gamma)$
- ► ATLAS-CONF-2013-030, ATLAS-CONF-2013-031 (H→WW)
- Mass measurement
 - ATLAS-CONF-2013-014
- Couplings
 - ATLAS-CONF-2013-034
- Spin
 - ATLAS-CONF-2013-040
- Perspectives
 - ATL-PHYS-PUB-2012-004

Backup slides

After the LHC shutdown

CP violation in the Higgs sector

 $A(X \to VV) \sim \left(a_1 M_X^2 g_{\mu\nu} + a_2 (q_1 + q_2)_{\mu} (q_1 + q_2)_{\nu} + a_3 \varepsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta}\right) \varepsilon_1^{*\mu} \varepsilon_2^{*\nu}$

test $a_1=1$, $a_2=0$, $a_3\neq 0$

coupling measurements

precision in κ_V , κ_F fit

	300fb^{-1}	$3000 fb^{-1}$
ĸ _V	3.0% (5.6%)	1.9% (4.5%)
ĸ _F	8.9% (10%)	3.6% (5.9%)

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2017)

Integrated	Signal (S) and	6 + 6 <i>i</i>	6 <i>i</i>	4 + 4i
Luminosity	Background (B)			
100 fb^{-1}	S = 158; B = 110	3.0	2.4	2.2
200 fb ⁻¹	S = 316; B = 220	4.2	3.3	3.1
300 fb^{-1}	S = 474; B = 330	5.2	4.1	3.8

separation (in σ @14 TeV)

19

Combined channels

Higgs Boson	Subsequent	Sub-Channels	
Decay	Decay	Sub-Chamlers	$[fb^{-1}]$
		2011 $\sqrt{s} = 7 \text{ TeV}$	
$H \rightarrow ZZ^{(*)}$	4 <i>l</i>	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	4.6
$H \rightarrow \alpha \alpha$		10 categories	4.8
$\Pi \to \gamma \gamma$	-	$\{p_{\mathrm{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet VBF}\}$	
	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, VH\}$	4.6
$H \rightarrow \tau \tau$	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	4.6
11 ->	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	4.6
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	4.6
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7
	$Z \to \ell \ell$	$p_{\rm T}^{\rm Z} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7
		$2012 \sqrt{5} - 8 \text{ TeV}$	

$2012 \sqrt{s} = 8 \text{ lev}$

		1	
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	20.7
$H \rightarrow \alpha \alpha$		14 categories	20.7
$\Pi \rightarrow \gamma \gamma$	_	${p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}} \oplus {2\text{-jet VBF}} \oplus {\ell\text{-tag}, E_{\text{T}}^{\text{miss}}\text{-tag}, 2\text{-jet VH}}^{2}$	
$H \rightarrow WW^{(*)}$	evμv	$\{e\mu, \mu e\} \otimes \{0\text{-jet}, 1\text{-jet}\}$	13
	$ au_{ m lep} au_{ m lep}$	$\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, VH\}$	13
$H \rightarrow \tau \tau$	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	13
$\Pi \rightarrow \Pi$	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	13
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	13
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13
	$Z \rightarrow \ell \ell$	$p_{\rm T}^Z \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

Evidence of VBF production

3.1 σ evidence of VBF production

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

Mass resolution in $H \rightarrow ZZ \rightarrow 4\ell$

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

MH

Are yy and ZZ masses compatible?

• main correlation from e/γ energy scale systematics • individual measurements compatible at 1.5% (2.4 σ) level

m_H

Ratio of branching ratios / SM

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

Solving sign degeneracy

 $(\sigma \times BR)(gg \rightarrow H \rightarrow \gamma \gamma) = \sigma_{SM}(gg \rightarrow H) \cdot BR_{SM}(H \rightarrow \gamma \gamma) \cdot \kappa_{g^{2}} \cdot \kappa_{\gamma^{2}}/\kappa_{H^{2}}$

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

in the SM, ggH and $H \rightarrow \gamma \gamma$ are loop-induced

1. assume only SM particles contribute to these loops

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

in the SM, ggH and $H{\rightarrow}\gamma\gamma$ are loop-induced

1. assume only SM particles contribute to these loops

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

3. no assumption on the total decay width and on the $H \rightarrow \gamma \gamma$ loop content

2

1. fermion vs vector couplings; only SM particles

$$\sigma(qg \to H) * \mathrm{BR}(H \to \gamma\gamma) \sim \frac{\kappa_F^2 \cdot \kappa_Y^2(\kappa_F, \kappa_V)}{0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2}$$

$$\sigma(qq' \to qq'H) * \mathrm{BR}(H \to \gamma\gamma) \sim \frac{\kappa_V^2 \cdot \kappa_Y^2(\kappa_F, \kappa_V)}{0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2}$$

$$\sigma(qg \to H) * \mathrm{BR}(H \to ZZ^{(*)}, H \to WW^{(*)}) \sim \frac{\kappa_F^2 \cdot \kappa_V^2}{0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2}$$

$$\sigma(qq' \to qq'H) * \mathrm{BR}(H \to ZZ^{(*)}, H \to WW^{(*)}) \sim \frac{\kappa_V^2 \cdot \kappa_V^2}{0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2}$$

$$\sigma(qq' \to qq'H, VH) * \mathrm{BR}(H \to \tau\tau, H \to b\bar{b}) \sim \frac{\kappa_V^2 \cdot \kappa_F^2}{0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2}$$

$$\kappa_\gamma^2(\kappa_F, \kappa_V) = 1.59 \cdot \kappa_V^2 - 0.66 \cdot \kappa_V \kappa_F + 0.07 \cdot \kappa_F^2$$

 $\kappa_{\rm W} = \kappa_{\rm Z}$ κ_V $\kappa_F \in [-0.88, -0.75] \cup [0.73, 1.07]$ $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_g$ $\kappa_V \in [0.91, 0.97] \cup [1.05, 1.21]$.

2. fermion vs vector couplings; no assumption on total decay width

$$\begin{split} \sigma(gg \to H) * \mathrm{BR}(H \to \gamma\gamma) &\sim \lambda_{FV}^2 \cdot \kappa_{VV}^2 \cdot \kappa_{\gamma}^2 (\lambda_{FV}, 1) \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to \gamma\gamma) &\sim \kappa_{VV}^2 \cdot \kappa_{\gamma}^2 (\lambda_{FV}, 1) \\ \sigma(gg \to H) * \mathrm{BR}(H \to ZZ^{(*)}, H \to WW^{(*)}) &\sim \lambda_{FV}^2 \cdot \kappa_{VV}^2 \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to ZZ^{(*)}, H \to WW^{(*)}) &\sim \kappa_{VV}^2 \\ \sigma(qq' \to qq'H, VH) * \mathrm{BR}(H \to \tau\tau, H \to b\bar{b}) &\sim \kappa_{VV}^2 \cdot \lambda_{FV}^2 \end{split}$$

$$\kappa_{\gamma}^2(\kappa_F,\kappa_V) = 1.59 \cdot \kappa_V^2 - 0.66 \cdot \kappa_V \kappa_F + 0.07 \cdot \kappa_F^2$$

 $\lambda_{FV} = \kappa_F / \kappa_V \qquad \lambda_{FV} \in [-0.94, -0.80] \cup [0.67, 0.93]$ $\kappa_{VV} = \kappa_V \cdot \kappa_V / \kappa_H \qquad \kappa_{VV} \in [0.96, 1.12] \cup [1.18, 1.49]$

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

3. fermion vs vector couplings; no assumption on total decay width and on $H \rightarrow \gamma \gamma$ loop content

$$\begin{split} \sigma(qg \to H) * \mathrm{BR}(H \to \gamma\gamma) &\sim \lambda_{FV}^2 \cdot \kappa_{VV}^2 \cdot \lambda_{\gamma V}^2 \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to \gamma\gamma) &\sim \kappa_{VV}^2 \cdot \lambda_{\gamma V}^2 \\ \sigma(gg \to H) * \mathrm{BR}(H \to ZZ^{(*)}, H \to WW^{(*)}) &\sim \lambda_{FV}^2 \cdot \kappa_{VV}^2 \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to ZZ^{(*)}, H \to WW^{(*)}) &\sim \kappa_{VV}^2 \\ \sigma(qq' \to qq'H, VH) * \mathrm{BR}(H \to \tau\tau, H \to b\bar{b}) &\sim \kappa_{VV}^2 \cdot \lambda_{FV}^2 \end{split}$$

$$\lambda_{FV} = \kappa_F / \kappa_V$$
$$\lambda_{\gamma V} = \kappa_{\gamma} / \kappa_V$$
$$\kappa_{VV} = \kappa_V \cdot \kappa_V / \kappa_H$$

$$\lambda_{FV} = 0.85^{+0.23}_{-0.13}$$
$$\lambda_{\gamma V} = 1.22^{+0.18}_{-0.14}$$
$$\kappa_{VV} = 1.15 \pm 0.21$$

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

1. W/Z couplings; only SM particles contribute to loops

$$\begin{split} \sigma(qg \to H) * \mathrm{BR}(H \to \gamma\gamma) &\sim \lambda_{FZ}^2 \cdot \kappa_{ZZ}^2 \cdot \kappa_{\gamma}^2 (\lambda_{FZ}, 1) \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to \gamma\gamma) &\sim \kappa_{\mathrm{VBF}}^2 (\lambda_{WZ}, 1) \cdot \kappa_{ZZ}^2 \cdot \kappa_{\gamma}^2 (\lambda_{FZ}, 1) \\ \sigma(gg \to H) * \mathrm{BR}(H \to ZZ^{(*)}) &\sim \lambda_{FZ}^2 \cdot \kappa_{ZZ}^2 \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to ZZ^{(*)}) &\sim \kappa_{\mathrm{VBF}}^2 (\lambda_{WZ}, 1) \cdot \kappa_{ZZ}^2 \\ \sigma(gg \to H) * \mathrm{BR}(H \to WW^{(*)}) &\sim \lambda_{FZ}^2 \cdot \kappa_{ZZ}^2 \cdot \lambda_{WZ}^2 \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to WW^{(*)}) &\sim \kappa_{\mathrm{VBF}}^2 (\lambda_{WZ}, 1) \cdot \kappa_{ZZ}^2 \cdot \lambda_{WZ}^2 \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to WW^{(*)}) &\sim \kappa_{\mathrm{VBF}}^2 (\lambda_{WZ}, 1) \cdot \kappa_{ZZ}^2 \cdot \lambda_{WZ}^2 \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to T\tau) &\sim \kappa_{\mathrm{VBF}}^2 (\lambda_{WZ}, 1) \cdot \kappa_{ZZ}^2 \cdot \lambda_{FZ}^2 \end{split}$$

$$\kappa_{ZZ} = \kappa_Z \cdot \kappa_Z / \kappa_H$$

 $\lambda_{WZ} = \kappa_W / \kappa_Z$
 $\lambda_{FZ} = \kappa_F / \kappa_Z$

$$\lambda_{WZ} \in [0.64, 0.87]$$

 $\lambda_{FZ} \in [-0.89, -0.55]$
 $\kappa_{ZZ} \in [1.20, 2.08]$

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

2. W/Z couplings; decouple possible new physics contribution in $\gamma\gamma$

$$\begin{split} \sigma(qg \to H) * \mathrm{BR}(H \to \gamma\gamma) &\sim \lambda_{FZ}^2 \cdot \kappa_{ZZ}^2 \cdot \lambda_{\gamma Z}^2 \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to \gamma\gamma) &\sim \kappa_{\mathrm{VBF}}^2(\lambda_{\mathrm{WZ}}, 1) \cdot \kappa_{ZZ}^2 \cdot \lambda_{\gamma Z}^2 \\ \sigma(qg \to H) * \mathrm{BR}(H \to ZZ^{(*)}) &\sim \lambda_{FZ}^2 \cdot \kappa_{ZZ}^2 \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to ZZ^{(*)}) &\sim \kappa_{\mathrm{VBF}}^2(\lambda_{\mathrm{WZ}}, 1) \cdot \kappa_{ZZ}^2 \\ \sigma(qg \to H) * \mathrm{BR}(H \to WW^{(*)}) &\sim \lambda_{FZ}^2 \cdot \kappa_{ZZ}^2 \cdot \lambda_{\mathrm{WZ}}^2 \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to WW^{(*)}) &\sim \kappa_{\mathrm{VBF}}^2(\lambda_{\mathrm{WZ}}, 1) \cdot \kappa_{ZZ}^2 \cdot \lambda_{\mathrm{WZ}}^2 \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to WW^{(*)}) &\sim \kappa_{\mathrm{VBF}}^2(\lambda_{\mathrm{WZ}}, 1) \cdot \kappa_{ZZ}^2 \cdot \lambda_{\mathrm{WZ}}^2 \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to WW^{(*)}) &\sim \kappa_{\mathrm{VBF}}^2(\lambda_{\mathrm{WZ}}, 1) \cdot \kappa_{ZZ}^2 \cdot \lambda_{\mathrm{WZ}}^2 \end{split}$$

$$\kappa_{ZZ} = \kappa_Z \cdot \kappa_Z / \kappa_H$$

 $\lambda_{WZ} = \kappa_W / \kappa_Z$
 $\lambda_{\gamma Z} = \kappa_{\gamma} / \kappa_Z$
 $\lambda_{FZ} = \kappa_F / \kappa_Z$

$$\lambda_{WZ} = 0.80 \pm 0.15$$

 $\lambda_{\gamma Z} = 1.10 \pm 0.18$
 $\lambda_{FZ} = 0.74^{+0.21}_{-0.17}$
 $\kappa_{ZZ} = 1.5^{+0.5}_{-0.4}$

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

1. BSM contributions; assume no new contribution to total Higgs width

$$\begin{aligned} \sigma(gg \to H) * \mathrm{BR}(H \to \gamma\gamma) &\sim & \frac{\kappa_{\mathrm{g}}^2 \cdot \kappa_{\gamma}^2}{0.085 \cdot \kappa_{\mathrm{g}}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.91} \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to \gamma\gamma) &\sim & \frac{\kappa_{\gamma}^2}{0.085 \cdot \kappa_{\mathrm{g}}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.91} \\ \sigma(gg \to H) * \mathrm{BR}(H \to ZZ^{(*)}, H \to WW^{(*)}) &\sim & \frac{\kappa_{\mathrm{g}}^2}{0.085 \cdot \kappa_{\mathrm{g}}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.91} \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to ZZ^{(*)}, H \to WW^{(*)}) &\sim & \frac{1}{0.085 \cdot \kappa_{\mathrm{g}}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.91} \\ \sigma(qq' \to qq'H, VH) * \mathrm{BR}(H \to \tau\tau, H \to b\bar{b}) &\sim & \frac{1}{0.085 \cdot \kappa_{\mathrm{g}}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.91} \\ \kappa_{\mathrm{g}} &= & 1.08 \pm 0.14 \\ \kappa_{\gamma} &= & 1.23^{+0.16}_{-0.13} \end{aligned}$$

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

2. BSM contributions; allow for invisible/undetectable final states

$$\begin{aligned} \sigma(gg \to H) * \mathrm{BR}(H \to \gamma\gamma) &\sim & \frac{\kappa_{\mathrm{g}}^2 \cdot \kappa_{\gamma}^2}{0.085 \cdot \kappa_{\mathrm{g}}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.91} \cdot (1 - \mathrm{BR}_{\mathrm{inv.,undet.}}) \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to \gamma\gamma) &\sim & \frac{\kappa_{\gamma}^2}{0.085 \cdot \kappa_{\mathrm{g}}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.91} \cdot (1 - \mathrm{BR}_{\mathrm{inv.,undet.}}) \\ \sigma(gg \to H) * \mathrm{BR}(H \to ZZ^{(*)}, H \to WW^{(*)}) &\sim & \frac{\kappa_{\mathrm{g}}^2}{0.085 \cdot \kappa_{\mathrm{g}}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.91} \cdot (1 - \mathrm{BR}_{\mathrm{inv.,undet.}}) \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to ZZ^{(*)}, H \to WW^{(*)}) &\sim & \frac{1}{0.085 \cdot \kappa_{\mathrm{g}}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.91} \cdot (1 - \mathrm{BR}_{\mathrm{inv.,undet.}}) \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to ZZ^{(*)}, H \to WW^{(*)}) &\sim & \frac{1}{0.085 \cdot \kappa_{\mathrm{g}}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.91} \cdot (1 - \mathrm{BR}_{\mathrm{inv.,undet.}}) \\ \sigma(qq' \to qq'H, VH) * \mathrm{BR}(H \to \tau\tau, H \to b\bar{b}) &\sim & \frac{1}{0.085 \cdot \kappa_{\mathrm{g}}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.91} \cdot (1 - \mathrm{BR}_{\mathrm{inv.,undet.}}) \end{aligned}$$

$$\Gamma_{\rm H} = \frac{\kappa_{\rm H}^2(\kappa_i)}{(1 - BR_{\rm inv.,undet.})} \Gamma_{\rm H}^{\rm SM}$$

$$\begin{split} \kappa_g &= 1.08^{+0.32}_{-0.14} \\ \kappa_\gamma &= 1.24^{+0.16}_{-0.14} \\ BR_{inv.,undet.} &< 0.33 \end{split}$$

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

J^P: test statistics vs fqq

$H \rightarrow ZZ \rightarrow 4\ell$ spin

|PC|

J^P discrimination in WW

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

J^P discrimination in WW

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

J^P discrimination in WW

BDT (o⁺ vs bkg)

BDT (2⁺ vs bkg)

41

 θ_i : angle, in Z_i reference frame, between lepton and Z_i flight line

Mass/angular distributions

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

Individual spin results

H→WW

$f_{qar q}$	$N_{\rm fit}(0^+)$	$N_{\rm fit}(2_m^+)$	exp. $p_0(0^+)$	exp. $p_0(2_m^+)$	obs. $p_0(0^+)$	obs. $p_0(2_m^+)$	1-CL _S (2_m^+)
100%	270^{+100}_{-80}	110^{+110}_{-90}	0.013	0.005	0.543	0.005	0.99
75%	250^{+100}_{-80}	170^{+110}_{-100}	0.034	0.007	0.591	0.005	0.99
50%	250^{+100}_{-80}	230^{+140}_{-100}	0.035	0.012	0.619	0.007	0.98
25%	260^{+110}_{-80}	260^{+130}_{-110}	0.048	0.019	0.613	0.010	0.97
0%	260^{+100}_{-80}	320^{+130}_{-110}	0.091	0.057	0.725	0.014	0.95

$f_{-}(0/_{0})$	Spin	p-values (%)		$1 - CI_{2}(2^{+})(\%)$	
$J_{q\bar{q}}(n)$	hypothesis	expected	observed	$1 - CL_{S}(2)(\%)$	
0	0+	1.2	58.8	00.3	
0	2+	0.5	0.3	33.5	
25	0+	6.3	60.2	02.2	
25	2+	5.3	3.1	92.2	
50	0+	24.3	75.2	68	
50	2+	23.4	7.9	00	
75	0+	29.4	88.6	70	
15	2+	28.0	3.4	10	
100	0+	14.8	79.8	88	
	2+	13.5	2.5	00	

		BDT analysis				J ^P -MELA analysis				
		tested J^P for		tested 0 ⁺ for		tested J^P for		tested 0 ⁺ for		
a		an assu	med 0^+	an assumed J^P	CL _S	an assumed 0 ⁺		an assumed J^P	CL _S	
		expected	observed	observed*		expected	observed	observed*		
0-	p_0	0.0037	0.015	0.31	0.022	0.0011	0.0022	0.40	0.004	
1+	<i>p</i> ₀	0.0016	0.001	0.55	0.002	0.0031	0.0028	0.51	0.006	
1-	p_0	0.0038	0.051	0.15	0.060	0.0010	0.027	0.11	0.031	
2_{m}^{+}	p_0	0.092	0.079	0.53	0.168	0.064	0.11	0.38	0.182	
2-	p_0	0.0053	0.25	0.034	0.258	0.0032	0.11	0.08	0.116	

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)

 $|\mathsf{PC}|$

YY categorization

Fiducial cross-section

measure production and decay cross section in $H{\rightarrow}\gamma\gamma$

- inclusive analysis (no categories: more model-independent approach)
- * fiducial region: photon $|\eta| < 2.37$, $E_T^{\gamma_1} > 40$ GeV, $E_T^{\gamma_2} > 30$ GeV

Valerio Ippolito - Higgs Properties at ATLAS (May 29th, 2013)