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History

1977

Infrared (IR) Safe

Sterman-Weinberg jet definition introduced
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History

Immediately after Sterman Weinberg jet several IR safe observables
were proposed and continue to be proposed..

◮ Thrust (1977)

◮ Spherocity

◮ C-parameter
...

◮ Jet Mass

◮ Jet Broadening
...

◮ Angularity (2003)

...

◮ planar flow (2008)
...
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What is Infrared Safety ?

Feynman diagrams are singular at particle production thresholds.

An IR safe observable O should satisfy, thus

O(pµ1 , p
µ
2 , · · · , (1− λ)pµn , λp

µ
n ) = O(pµ1 , p

µ
2 , · · · , pµn )
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IR Safe Event Shapes

T =
Max

n

∑

i |pi · n|
∑

i Ei
Thrust

C =
1

Q

∑

i

3|p⊥i |
cosh ηi

C− parameter

τa = e−|y |(1−a) Angularity
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Event Shapes

Event Shapes

◮ Measure geometrical properties of energy flow.

◮ Among the first observables proposed to test QCD.

◮ Crucial in αs extraction. Gehrmann et. al EPJ C73 (2013) 2265

◮ Essential in parton shower tuning
&
non-perturbative components of MC event generators.

◮ Used in modelling and testing hadronization process.
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Renormalons and Power Corrections
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Power Corrections

Parameterization of a physical distribution

σ(Q) = σpert(Q) +

∞
∑

n=n0

σn
Qn
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Power Corrections

Parameterization of a physical distribution

σ(Q) = σpert(Q) +

∞
∑

n=n0

σn
Qn

◮ This is applicable to total cross-section also.

◮ Power corrections are small for inclusive variables

◮ 1/Q4 for total cross-section.

◮ Differential cross-sections have larger corrections because the
scale is much smaller.

◮ 1/(1− T )Q for Thrust
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◮ Extraction of Power corrections (non-perturbative) from
perturbation series !!

How is it possible ?
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◮ Extraction of Power corrections (non-perturbative) from
perturbation series !!

How is it possible ?

◮ Ambiguity in definition of σn (F. David: NPB234,237)

◮ σpert not well defined: factorial growth

Ambiguities of σpert compensated by σn
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Power Corrections

◮ Factorial divergence made manifest by running coupling.
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Mining Factorial Divergence

Let R be a physical quantity.

R ∼
∞
∑

n=0

rnα
n+1

The Borel transform

B [R ](u) =

∞
∑

n=0

rn
un

n!

The Borel sum

R =

∫ ∞

0
due−u/αB [R ](u)

If B[R] has pole at u = x/β0 then ambiguity is δR ∼
(

Λ2
QCD

Q2

)x

where αs ∼ 1/β0 ln(Q
2/Λ2

QCD)
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Dressed Gluon

Renormalon-resummed differential x-section

1

σ

dσ

dt
(t,Q2)

∣

∣

∣

SDG
= − CF

2β0

∫ 1

0
dξ

dF(ξ, t)

dξ
A(ξQ2)

t = 1− T

(Ball, Beneke, Braun NPB 452 (1995) 563)
(Beneke, Braun NPB 426 (1994) 301)

(Dokshitzer, Marchesini, Webber NPB 469 (1996) 9)

◮ Characteristic f n with non-zero gluon mass

◮ A(ξQ2) is running coupling with a Borel representation.

A(ξQ2) =

∫ ∞

0
du

(

Q2

Λ2

)−u
sinπu

πu
e

5
3
uξ−u
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Borel Function

1

σ

dσ

dt
(t,Q2)

∣

∣

∣

SDG
=

CF

2β0

∫ ∞

0
du

(

Q2

Λ2

)−u

B(t, u)

B(t, u)
∣

∣

∣

logs
= 2e

5
3
u sinπu

πu

[

2

u
t−1−2u − t−1−u

(

2

u
+

1

1− u
+

1

2− u

)]

◮ u = 0 poles cancel: perturbative coefficients defined.

◮ Because of sinπu factor there are no singularities in u.

◮ The first term originates from soft gluons.

◮ Second term originates from collinear gluons.
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Dressed Gluon Exponentiation

◮ QCD matrix elements factorize for soft and collinear radiation

◮ Log enhanced terms exponentiate in Laplace space

1

σ

dσ

dt
(t,Q2)

∣

∣

∣

DGE
=

∫

dν

2πi
eνt exp [S(ν,Q2)]

◮ S contains renormalons

(Gardi NPB 622 (2002) 365)

(Gardi and Rathsman, NPB 609 (2001) 123)
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Dressed Gluon Exponentiation

S(ν,Q2) =
CF

2β0

∫ ∞

0
du

(

Q2

Λ2

)−u

B t
ν(u)

and

B t
ν(u) = 2e

5
3
u sinπu

πu

[

Γ(−2u)(ν2u − 1)
2

u

−Γ(−u)(νu − 1)

(

2

u
+

1

1− u
+

1

2− u

)

]

◮ Renormalon singularities at odd 2u (= m)

◮ Non-Perturbative correction of O(Λν/Q)m in S(ν,Q2)
necessary to compensate ambiguity
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Dressed Gluon Exponentiation

B(t, u)
∣

∣

∣

log
∼ 2

u
t−1−2u − t−1−u

(

2

u
+

1

1− u
+

1

2− u

)

Gardi and Rathsman : Nucl .Phys.B609 : 123, 2001.

B(c , u)
∣

∣

∣

log
∼ 4(2c)−1−2u

√
πΓ(u)

Γ(12 + u)
− c−1−u

(

2

u
+

1

1− u
+

1

2− u

)

Gardi and Magnea : JHEP0308 : 030, 2003

Aim: Leading power corrections without doing the full painful
calculation of the characteristic function.
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Eikonal Dressed Gluon Approximation
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Eikonal Approximation

◮ Computation of Power Corrections are involved, contain
elliptic integrals, ...

◮ Traditionally calculations done using energy fractions xi

However, Leading power corrections can be obtained easily using
Eikonal approximation and p⊥ and y variables.

For the approximation to be useful

◮ Phase space should factorize, and

◮ Matrix element should factorize

For soft and collinear gluons emitted from nearly on-shell partons,
factorization occurs. (Gardi: NPB 622, 365)
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Event Shapes In p⊥ And y Variables

Consider the following class of shapes (Gardi)

e =
∑

i

√

p2i⊥ + p2

Q2
he(y)

1− T , C -parameter, and angularity fall in this

he(y) =



































e−|y | 1-thrust

3

cosh y
c-parameter

e−|y |(1−a) angularity
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Eikonal Approximation

◮ Off-shell soft gluon phase space & Matrix element factorize

Eikonal current jµ =
pµ

p.k
(1)

Matrix Element |M|2 =
2

k2 + k2⊥
|MB|2

◮ gluon phase space
∫

d3k

(2π)32k0
=

1

(4π)2

∫

dk2⊥dy

◮ This yields a simple result for characteristic function.

F =
8

e

∫ ymax

ymin

dy

◮ Singularity in k2 → 0 limit appears from wide angle soft
gluons.
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Borel Function In Eikonal approximation

t : ymin = ln

(

1

t

√

k2/Q2

)

c : ymin = cosh−1

(

1

2c

√

k2/Q2

)

(2)

We immediately obtain the Borel function

B(c , u) = 2
sinπu

πu
e

5
3
u

[

4(2c)−1−2u

√
πΓ(u)

Γ(u + 1
2)

]

B(t, u) = 2
sinπu

πu
e

5
3
u 1

t

[

2

u
t−1−2u

]

Leading power corrections reproduced !
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Angularity in Eikonal Approximation

Angularity τa =
∑

i

√

p2i⊥ + p2

Q2
e−|y |(1−a)

IR safety implies −∞ < a < 2. We will be restricted to a ≤ 0

τa : ymin =
1

1− a
ln

(

1

τa

√

k2/Q2

)

B(τa, u) = 2
sinπu

πu
e

5
3
u 1

(1− a)τa

[

2

u
τ−1−2u
a

]

Scaling property discovered by Berger and Sterman is reproduced.

(Berger, Sterman JHEP 0309 058, EPJ C33 S407)
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Summary And Outlook

◮ Power corrections give information about hadronization.

◮ These corrections can be estimated from the ambiguity of
perturbation series.

◮ Many shapes have been studied and power corrections
estimated .

◮ We use the method of Dressed Gluon Exponentiation and use
Eikonal approx. to obtain Leading Power Corrections in a
simple manner.

◮ Would be useful to get Power corrections if new shapes are
defined.

◮ This method may be extended to Hadronic event shapes.
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Thank you !
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