

Latest results of OPERA

A.Meregaglia - IN2P3/CNRS - IPHC Strasbourg On behalf of the OPERA collaboration

28th May 2013 - Blois

OPERA collaboration

IRB Zagreb

IIHE ULB Bruxelles

Aichi

Bari

LAPP Annecy IPHC Strasbourg

Hamburg

OPERA is an international collaboration made of ~ 140 physicists from 28 institutions and 11 countries.

Bern

METU Ankara

INR RAS Moscow LPI RAS Moscow ITEP Moscow SINP MSU Moscow JINR Dubna

OPERA experiment

LNGS underground laboratory

- OPERA (Oscillation Project with Emulsion tRacking Apparatus) is a long baseline neutrino oscillation experiment.
- The "conventional" CNGS (CERN Neutrinos to Gran Sasso) neutrino beam is produced at CERN and measured by the OPERA detector at the LNGS laboratory, at a distance of 730 km.
- The goal of the experiment, using an almost pure v_{μ} beam, is the measurement for the first time of the $v_{\mu} \rightarrow v_{\tau}$ transition detecting the τ lepton created in Charged Current (CC) interactions (neutrino oscillation in an appearance mode).

CNGS beam

• The beam is optimized for v_{τ} appearance in the atmospheric oscillation region i.e. $\Delta m_{23}^2 \approx 2.4 \times 10^{-3} \text{ eV}^2$ and $\sin^2 2\theta_{23} \approx 1.0$ (as measured by SK, K2K and MINOS).

Beam	param	eters
------	-------	-------

< E _{vµ} >	I7 GeV		
$(v_e + v_e)/v_\mu$	0.87%		
$\overline{ u_{\mu}}/ u_{\mu}$	2.1%		
ν_{τ} prompt	negligible		
nominal p.o.t./year	4.5×10 ¹⁹		
ν_{μ} CC/kton/year	~2900		
v_{τ} CC/kton/year	~18.5		

Contaminations given in terms of interactions in the OPERA detector

• Best performance obtained in 2011.

 Overall p.o.t. 20% less than the proposal value (22.5 x 10¹⁹).

Beam performance

Year	Beam days	p.o.t (10 ¹⁹)
2008	123	1.74
2009	155	3.53
2010	187	4.09
2011	243	4.75
2012	257	3.86
Total	965	17.97

A.Meregaglia (IPHC)

Detection principle

- The detection of the τ lepton requires an identification of the "kink".
- The detector must fulfil the following requests:
 - I. Large mass due to small CC cross section (lead target).
 - 2. Micrometric resolution to observe the kink (photographic emulsions).
 - 3. Select neutrino interactions (electronic detectors).
 - 4. Identify muons to reduce charm background (electronic detectors).

OPERA: hybrid detector (emulsions + electronic detectors)

τ identification

The OPERA detector

Detector design

 Each spectrometer consists of 22 RPC planes in magnetic field (1.5 T) and 6 Drift Tubes planes, to identify muons and measure charge and momentum, in order to reduce charm background.

Δp/p (<50 GeV/c)	~ 20%	
μ ID (with TT)	~ 95%	

- The total target mass is 1.25 kton (about 150000 bricks).
- Each target consists of 27 leademulsion brick walls alternated with scintillator planes (Target Tracker) used mainly for the identification of the brick to be extracted.
- The TT is made of plastic scintillator + wave length shifting fiber + 64 channel multi-anode Hamamatsu PM.

At least 5 p.e. are detected for a mip with a detection efficiency of \sim 99%.

OPERA working chain

I. Trigger on event "on time" with CNGS and selection of the brick using electronic detectors information (brick finding algorithm).

Brick selection

- 2. Brick removed by BMS (Brick Manipulating System).
- 3. The CS are developed and tracks validating the corresponding brick are searched for.
- 4. If a track matching the TT reconstruction is found in the CS, the brick is exposed to cosmic rays for sheets alignment.
- 5. The brick is disassembled and the emulsion films are developed and sent to scanning labs.

Up to 50 bricks can be extracted each day.

A.Meregaglia (IPHC)

ED Data / MC comparison

• The electronic detectors (ED) simulation has been benchmarked against the large available data, showing a rather good agreement (New J.Phys. 13 (2011) 053051).

Visible energy (CC events)

Muon charge ratio

	μ+/μ-
Data	(3.92 ± 0.37) %
MC	(3.63 ± 0.13)%

NC/CC ratio

	NC/CC
Data	0.228 ± 0.008
MC	0.257 ± 0.03 l

Scanning

- The goal of scanning is to reconstruct the interaction vertex, measure particles momentum via multiple scattering and identify possible kinks.
- The scanning speed by automatic microscopes is about 20 cm²/h.

Vertex location

• Volume scan (about 2 cm³) around the tracks stopping point.

Vertex location

• Film to film connection.

Vertex location

• Converging tracks (in agreement with the CS).

$v_{\mu} \rightarrow v_{e}$ Analysis

- In the 2008 and 2009 runs a dedicated v_e search was performed.
- Out of 505 neutrino events without muon 19 candidates were found.
- In the standard 3 flavour scenario, the observation is compatible with a background-only hypothesis.
- A specific analysis for non-standard oscillation at large Δm^2 resulted in a competitive limit (arXiv:1303.3953 submitted to JHEP).

Standard scenario

Non-standard oscillations

$\nu_{\mu} \rightarrow \nu_{\tau}$ Analysis

- In the 2008 and 2009 runs analysis a conservative approach was used to get confidence on the detector performance: no kinematical cuts and a slow analysis speed with a signal/noise ratio not optimized.
- For the 2010 2012 runs kinematical selections were applied:
 - I. Muon momentum of less than 15 GeV.
 - 2. Most probable brick analyzed for all events before moving to the other ones to optimize the ratio between efficiency and analysis time.
 - 3. Anticipation of the analysis of 0μ events (NC like ones with no muon detected)
- For results in the 2012 summer conferences the following runs were analyzed: all samples for 2010 run, 0µ sample for 2011 run and run 2012 not analyzed.
- Now the remaining samples are being analyzed (about 60% of the events have been analyzed so far).

So far 3 candidates have been observed

First candidate

- In the decay search of 2008 and 2009 data we found a v_{τ} candidate (*Phys. Lett. B 691 (2010*) 138).
- The event passes all selection criteria for the signal and it is classified as a possible decay of a τ into 1 prong hadron.
- The decay mode is compatible with $\tau \rightarrow \rho (\pi^{-}\pi^{0}) \nu_{\tau}$ which has a branching ratio of 25%.

Variable	Observed	Cut	
Kink angle (mrad)	41 ± 2	>20	
Decay length (µm)	1335 ± 35 < 2 lead plat		
P daughter (GeV/c)	I 2 ⁺⁶ -3	>2	
Daughter Pt (MeV/c)	470 ⁺²³⁰ -120	>300	
Missing Pt (MeV/c)	570 +320-170	<1000	
Φ angle (deg)	173 ± 2	>90	

Second candidate

- In the decay search of 2011 data we found a second v_{τ} candidate.
- The event passes all selection criteria for the signal and it is classified as a possible decay of a τ into 3 prong hadrons (branching ratio of 15%).
- The decay point is in the plastic base and no nuclear fragment is observed.

Variable	Observed	Cut	
Kink angle (mrad)	87.4 ± 1.5 >20 & <50		
Decay length (µm)	I 540 < 2 lead plate		
P daughter (GeV/c)	8.4 ± 1.7	>3	
Min. invariant mass (MeV/c²)	960 ± 130	>500 & <2000	
Invariant mass(MeV/c²)	800 ± 120	>500 & <2000	
Missing Pt (MeV/c)	310 ± 110 <1000		
Φ angle (deg)	167.8 ± 1.1	>90	

Kinematical variables

Third candidate

- In the decay search of 2012 data we found a third v_{τ} candidate.
- The event passes all selection criteria for the signal and it is classified as a possible decay of a τ into μ (branching ratio of 17.7%).
- The γ attachment to the decay vertex is excluded.
- The momentum/range correlation is inconsistent with track 2 being a muon, and the muon (track I) charge is negative at 5.6 sigmas.

Variable	Observed	Cut	
Kink angle (mrad)	245 ± 5	>20 & <500	
Decay length (µm)	376 ± 10 < 2 lead pla		
Pμ(GeV/c)	2.8 ± 0.2	<15	
Daughter Pt (MeV/c)	690 ± 50	>250	
Φ angle (deg)	154.5 ± 1.5	>90	

Kinematical variables

Significance

• The expected number of events for the scanned statistics is:

Decay channel		Background			
	Signal	All	Charm	μ scattering	Hadronic interaction
τ→h	0.66	0.045	0.029		0.016
τ→3h	0.61	0.090	0.087		0.003
τ→μ	0.56	0.026	0.0084	0.018	
τ→e	0.49	0.065	0.065		
All	2.32	0.226	0.19	0.018	0.019

- 3 observed events in the $\tau \rightarrow h$, $\tau \rightarrow 3h$ and $\tau \rightarrow \mu$ channels.
- The probability to be a background fluctuation is 7.29×10^{-4} .
- This corresponds to a 3.2 σ significance of non-null observation.

Conclusions

- The OPERA detector has been taking physics data successfully for 5 years (2008 2012).
- The detector is still running for cosmic muons data taking.
- In the analyzed data three τ candidates have been observed.
- Background studies showed good agreement between data and MC.
- A significance of 3.2 σ of non-null observation has been obtained (simple counting method).
- A significance of 4 σ is within reach.