

The Higgs Boson: Searches For Fermionic Decays

Sasha Pranko (LBNL)

On Behalf of ATLAS, CMS, CDF & D0 Collaborations

Outline

- Motivation & (very) brief theory trivia
- Covered in this talk
 - − Searches for SM $H \rightarrow bb$
 - Searches for SM ttH(\rightarrow bb)
 - Searches for SM $H \rightarrow \tau \tau$
 - Searches for SM $H \rightarrow \mu \mu$
 - A few words on future prospects
- <u>Not covered</u> in this talk
 - Results on BSM $H \rightarrow ff$ searches
- Disclaimer
 - Analyses technical details will be provided in parallel session talks
 - ATLAS: Goetz Gaycken, link
 - CMS: Andrew Gilbert, <u>link</u>
 - Tevatron: Koji Sato, <u>link</u>

Higgs-like Boson is Found! What's next?

- July 4th 2012: CMS & ATLAS announced the discovery of a new boson with mass ~125 GeV which decays to γγ, ZZ, WW pairs
- Is this newly discovered boson a SM Higgs boson or does it have non-SM like properties?
 - Are decay rates, spin & CP properties consistent with SM Higgs?
- Search for H→fermions decays is one of the most important goals for the Higgs program
 - Are $\Gamma_{H \rightarrow ff}$ consistent with SM predictions?
 - Is it the same Higgs decaying to $H \rightarrow VV \& H \rightarrow ff$?
 - Is mass the same? CP properties?

$$\Gamma_{H \to ff} = \frac{N_C M_H}{8\pi v^2} m_f^2 \sqrt{1 - \frac{4m_f^2}{M_H^2}}$$

Decay	Br@125 GeV
H→bb	57.8%
Η→ττ	6.37%
Η→μμ	0.0217%

SM Higgs Production Trivia (for M_H=125 GeV)

	gg→H	VBF	VH	ttH
LHC: 8 TeV	19.5 pb	1.57 pb	1.08 pb	0.13 pb
Tevatron: 1.96 TeV	0.949 pb	0.065 pb	0.208 pb	0.0043 pb

5/26/13

Searches For VH With H→bb

ZH→ll+bb

- Signature: two opposite sign leptons and 2 btagged jets
- Major backgrounds: Z+ heavy flavor jets

ZH→vv+bb

- Signature: large MET and 2 b-tagged jets
- Major backgrounds: top, Z/W+ heavy flavor jets

WH→I/τhad+v+bb

- Signature: one lepton or hadronic τ, MET and 2 b-tagged jets
- **Major backgrounds**: top, W+ heavy flavor jets

LHC Results for VH(→bb): Examples of Distributions

- Cut-based analysis uses M_{bb} to extract signal
- CMS
 - Multivariate analyses use MVA-score distribution for signal extraction
- Leading sources of experimental uncertainties
 - B-tagging efficiency, jet energy scale & resolution, background normalization

Tevatron Results for VH(→bb): Examples of Distributions

Two tight b-tags

Examples of distributions for ZH→vv+bb

- Tevatron experiments
 - Multivariate analyses use MVA-score distribution for signal extraction
- Leading sources of experimental uncertainties
 - B-tagging efficiency, jet energy scale & resolution, background normalization

Building Confidence in VH(→bb) Results

- Analysis techniques validated in numerous data control regions
- Most important check comes from measurements of VZ(→bb) production using the same analysis techniques as in VH search
- Fitted diboson signal strength
 - ATLAS: $\mu_D = 1.09 \pm 0.20 \pm 0.22$
 - CMS: μ_D =1.19^{+0.28}-0.23 (8 TeV only)
 - Tevatron: $\mu_D = 0.68 \pm 0.14 \pm 0.14$

veighted entries / 1 CMS Preliminary Data 80 √s = 7TeV. L = 5.0 fb⁻² VH (125 GeV) $\sqrt{s} = 8$ TeV, L = 19.0 fb⁻ \rightarrow VH: H \rightarrow bb pp 60 Sub. MC stat. uncert. 💥 Visible MC stat. uncert. 40 20 200 M_{bb} [GeV] 50 100 150 0

5/27/13

LHC Results For VH With H→bb

- ATLAS: 17.7 fb⁻¹ of 7+8 TeV data
 - 95% CL limit on σ/σ_{SM} @ 125 GeV: expected 1.9×SM, observed 1.8×SM
- CMS: 24.0 fb⁻¹ of 7+8 TeV data
 - 95% CL limit on σ/σ_{SM} @ 125 GeV: expected 0.95×SM, observed 1.89×SM
 - Local significance at @ 125 GeV is $p_0=2.1\sigma$ 5/26/13 XXV Recontres de Blois

Tevatron Results For VH With H→bb

- CDF: 9.5-9.7 fb⁻¹ of 1.96 TeV data
 - Observe excess in a range of 120-140 GeV
 - − Best fitted signal strength: R_{fit} (VH→Vbb)=1.72^{+0.92}_{-0.87}
- D0: 9.5-9.7 fb⁻¹ of 1.96 TeV data
 - -~ 95% CL limit on $\sigma/\sigma_{_{SM}}$ @ 125 GeV: expected 2.3×SM, observed 3.2×SM

5/26/13

Tevatron Results For HV With H→bb

 Combined Tevatron result for VH(→bb) based on <10 fb⁻¹ of data at 1.96 TeV

- Excess of data over background predictions in the range of 120-140 GeV
- − Best fitted signal strength: $R_{fit}(VH \rightarrow Vbb)=1.59^{+0.69}_{-0.72}$

CMS Search for $H \rightarrow bb$ in VBF Channel

- First LHC search for $H \rightarrow bb$ in • **VBF** production
- Analysis overview ٠
 - 19 fb⁻¹ at 8 TeV
 - 4 energetic jets, 1 or 2 b-tagged iets
 - Event classification based on ANN using kinematic properties of nottagged jets
 - Signal extracted by fitting M_{bb}
- 95% CL upper limit on σ/σ_{SM} @ ۲ 125 GeV:
 - Expected 3.0×SM
 - Observed 3.6×SM

Search For ttH(→bb) Production

- ttH production is directly sensitive to ttH coupling
- Dominant background is top quark pair production
- ATLAS: lv+jets final state; cut-based analysis; event categories based on N_{jets} & N_{b-tag}
- CMS: lv+jets & 2l2v+jets final state; MVA analysis; event categories based on N_{leptons}, N_{jets} & N_{b-tag}

Examples of final discriminants used in fits for signal

5/26/13

Search For ttH(→bb) Production

- ATLAS: 4.7 fb⁻¹ of 7 TeV data
 - 95% CL limit on σ/σ_{SM} @ 125 GeV: expected 10.5×SM, observed 13.1×SM

• CMS: 10.1 fb⁻¹ of 7+8 TeV data

- 95% CL limit on σ/σ_{SM} @ 125 GeV: expected 5.1×SM, observed 5.8×SM

Searches for H→ττ

Run Number: 209109, Event Number: 86250372

Date: 2012-08-24 07:59:04 UTC

5/26/13

Searches For H→ττ At ATLAS & CMS

• Final states of tau decays

- H→ττ→2l+4ν (lep-lep): Br=12.4%
- − H→ττ→l+τ_{had}+3ν (lep-had): Br=45.6%
- − H \rightarrow ττ \rightarrow 2τ_{had}+2ν (had-had): Br=42%
- VH events in CMS analysis
 - W(I+v)+H(I τ_{had} +2 τ_{had})
 - Z(2I)+H(2I)
 - VH→VWW* are treated as part of the signal

- ATLAS & CMS analysis categories
 - VBF: require 2 jets with large $\Delta \eta_{JJ} \& M_{JJ}$
 - Boosted: require boosted ττ system
 - $P_T(H)>100/140$ GeV or high P_T jet
 - 1-jet with/without MET cut
 - 0-jet with/without MET cut

	VBF	Boosted	1-jet	0-jet	VH
ATLAS	v	v	✓	✓	×
CMS	✓	✓ had-had	Low/high P _T (τ)	To constrain systematics	✓
- / /					

Controlling Major Backgrounds in H→ττ Seahces

 Z→ττ embedding: except for τ-decays, all properties of a Z→ττ event are modeled by actual data

5/26/13

Di-Tau Mass Reconstruction in H→ττ Searches

- Good M($\tau\tau$) resolution is single most effective tool against Z $\rightarrow \tau\tau$
- ATLAS: Missing Mass Calculator (MMC), NIM A 654 (2011) 481
- CMS: SVfit, documented in CMS PAS HIG-13-004
- MMC & SVfit: sophisticated techniques to reconstruct $M(\tau\tau)$ in presence of neutrinos from τ -decays
- MMC & SVfit improve analysis sensitivity by 20%-30% compared to M_{vis}

LHC Results for $H \rightarrow \tau \tau$: Examples of $M(\tau \tau)$

 $H \rightarrow \tau \tau \rightarrow 2\tau_{had} + 2\nu$ (had-had) channel

LHC Results for H→ττ: Systematic Uncertainties

- ATLAS & CMS analyses have similar systematic uncertainties
 - CMS used 0-jet events to constrain some of the systematic uncertainties
- Leading sources of experimental uncertainties
 - Tau energy scale
 - ATLAS example of effect on $Z \rightarrow \tau \tau$ background: 4-15%
 - Normalization of $Z \rightarrow \tau \tau$ background
 - ATLAS example of effect on $Z \rightarrow \tau \tau$ background: 4-16%
 - TauID & trigger
 - CMS example: 8%
- Theoretical uncertainties on signal cross-section and acceptance
 - 10%-30% depending on category

Example of fitted nuisance parameters in CMS analysis

Tau ID & Trigger: $0.0 \pm 8.0\% \rightarrow -5.5 \pm 1.9\%$ $Z \rightarrow \ell \ell$: μ fakes τ_h : $0.0 \pm 30.0\% \rightarrow +10.2 \pm 15.9\%$ Tau Energy Scale ($\mu \tau_h$ channel): $0.0 \pm 3.0\% \rightarrow -0.8 \pm 0.2\%$ Tau Energy Scale ($e \tau_h$ channel): $0.0 \pm 3.0\% \rightarrow -1.3 \pm 0.5\%$

- ATLAS: 17.6 fb⁻¹ of 7+8 TeV data
 - Local significance @ 125 GeV: expected $p_0=1.7\sigma$, observed $p_0=1.1\sigma$
- CMS: 24.3 fb⁻¹ of 7+8 TeV data
 - Local significance @ 125 GeV: expected $p_0=2.62\sigma$, observed $p_0=2.85\sigma$
- CMS & ATLAS data are consistent with the presence of SM H→ττ signal 5/26/13 XXV Recontres de Blois 21

- CDF search for H→ττ: 6 fb⁻¹ of 1.96 TeV data
 - Lepton+ τ_{had} final state; 1-jet & 2-jet analysis categories
 - 95% CL limit on $\sigma/\sigma_{_{SM}}$ @ 125 GeV: expected 16.9×SM, observed 16.4×SM
- D0 search for $H \rightarrow \tau \tau$: 9.7 fb⁻¹ of 1.96 TeV data
 - Combination of VH $\rightarrow \tau_h \tau_h \mu$ and I+ τ_h +jj results
 - 95% CL limit on σ/σ_{SM} @ 125 GeV: expected 7.25×SM, observed 10.84×SM
 - These results are for $H \rightarrow \tau \tau$ enriched sub-sample

VBF H→ττ Candidate in CMS Data

ATLAS Search for $H \rightarrow \mu\mu$: Analysis Overview

- Analysis strategy
 - Inclusive search
 - Fit M(μμ) with analytic Signal
 +Bckg shape
 - Two analysis categories:
 - Central: |η(μ1,2)|<1.0
 - Non-central: rest
- Event selection for signal region
 - Two isolated opposite-sign muons
 - P_T(μ1)>25 GeV, P_T(μ2)>15 GeV
 - P_T(μμ)>15 GeV

Search window: 110-150 GeV MC background predictions are not used in the search (for optimization only)

- Signal model is a sum of Crystal Ball (CB) and Gaussian (GS) PDFs
- Background model is a sum of Breit-Wigner and exponential PDFs
 - No statistically significant biases in fits to simulation and control regions

ATLAS Results for $H \rightarrow \mu \mu$

Systematic uncertainties on signal normalization @125 GeV

- Cross-section: 15%
- Br(H→μμ): <6%</p>
- Acceptance uncertainty
 - Theory: <2.6%
 - Experimental: <4.2%

- ATLAS results with 20.7 fb⁻¹ of data at 8 TeV
 - No significant deviations outside uncertainty bands are observed
 - 95% CL limit on σ/σ_{SM} @ 125 GeV: expected 8.2×SM, observed 9.8×SM

Summary

- Extensive searches for fermionic decays of Higgs boson at both LHC and Tevatron
- No individual experiment has yet reached 3 sigma level sensitivity in searches for H→bb & H→ττ decays
- Overall, Tevatron & LHC data are consistent with the presence of SM H→bb & H→ττ decays
 - $> 2\sigma$ excess in the search for H \rightarrow bb in VH channel at Tevatron
 - 2.1 σ excess in the search for H \rightarrow bb in VH channel at CMS
 - Tantalizing hints of $H \rightarrow \tau \tau$ decays in recent CMS analysis
 - expected $p_0=2.62\sigma$, observed $p_0=2.85\sigma$
- First results for H→µµ search obtained by ATLAS experiment
 - As expected, no sensitivity for SM $H \rightarrow \mu\mu$ yet

5/26/13

Future Prospects & Goals

- Expected with the 7+8 TeV data
 - New and improved search for $H \rightarrow bb$ with full 7+8 TeV dataset
 - By ATLAS collaboration
 - New and improved search for $H \rightarrow \tau \tau$ with full 7+8 TeV dataset
 - New result by ATLAS collaboration
 - New and improved search for $H \rightarrow \mu\mu$ with full 7+8 TeV dataset
 - Updated result by ATLAS and new result by CMS
 - New and improved search for ttH with full 7+8 TeV dataset in all Higgs decay modes
 - sometime this year by both CMS & ATLAS
 - Need to start thinking about LHC combination for $H \rightarrow bb \& H \rightarrow \tau \tau$
- ATLAS and CMS goals for the next LHC run
 - Observation of $H \rightarrow \tau \tau$ decays and measurements in $H \rightarrow \tau \tau$ channel
 - Evidence for and possibly observation of $H \rightarrow bb$ decays in VH channel
- Stay tuned!!!

List Of Latest Publications

- ATLAS H→bb: <u>ATLAS-CONF-2012-161</u>
- CMS H \rightarrow bb: CMS-PAS-HIG-13-012, CMS-PAS-HIG-13-011
- CDF H→bb: <u>PRD87.052008</u>, PRL109.111804, PRL109.111803, JHEP02.004, PRL109.1811802
- D0 H→bb: PRL109.121804, PRL109.121803, PLB716.285, arXiv: 1301.6122, arXiv:1303.3276
- Tevatron combination: arXiv:1303.6346
- ATLAS ttH(\rightarrow bb): <u>ATLAS-CONF-2012-135</u>
- CMS ttH(→bb): <u>arXiv:1303.0763</u>
- ATLAS H→ττ: <u>ATLAS-CONF-2012-160</u>
- CMS H→ττ: CMS-PAS-HIG-13-004, CMS-PAS-HIG-12-053
- CDF H→ττ: PRL108.181804
- D0 H→ττ: arXiv:1302.5723, arXiv:1211.6993
- ATLAS $H \rightarrow \mu\mu$: <u>ATLAS-CONF-2013-010</u>

Backup Slides

ATLAS VH(→bb) Analysis: Event Selection

Object	0-lepton	1-lepton	2-lepton
Lontons	0 loose leptons	1 tight lepton	1 medium lepton
Leptons		+ 0 loose leptons	+ 1 loose lepton
	2 b-tags	2 b-tags	2 b-tags
Lots	$p_{\rm T}^1 > 45 { m ~GeV}$	$p_{\rm T}^1 > 45 { m ~GeV}$	$p_{\rm T}^1 > 45 { m ~GeV}$
Jeis	$p_{\rm T}^2 > 20 { m ~GeV}$	$p_{\rm T}^{2} > 20 {\rm GeV}$	$p_{\rm T}^2 > 20 {\rm GeV}$
	$+ \leq 1$ extra jets	+ 0 extra jets	-
Missing F.	$E_{\rm T}^{\rm miss} > 120 {\rm GeV}$	-	$E_{\rm T}^{\rm miss} < 60 { m ~GeV}$
Wissing LT	$p_{\rm T}^{\rm miss} > 30 { m GeV}$		
	$\Delta \phi(E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm miss}) < \pi/2$		
	$Min[\Delta \phi(E_T^{miss}, jet)] > 1.5$		
	$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, b\bar{b}) > 2.8$		
Vector Boson	-	$m_{\rm T}^W < 120 { m ~GeV}$	$83 < m_{\ell\ell} < 99 \text{ GeV}$

	0-lepton channel						
$\overline{E_{\rm T}^{\rm miss}~({\rm GeV})}$	120-160 160			-200	>200		
$\Delta R(b, \bar{b})$	0.1	7-1.9	0.7	-1.7	<1.5		
$p_{\rm T}^W$ (GeV)	0-50	50-100	100-150	150-200	>200		
$\Delta R(b, \bar{b})$		>0.7	0.7-1.6	<1.4			
$\overline{E_{\rm T}^{\rm miss}}$ (GeV)				> 50			
$m_{\rm T}^W({\rm GeV})$		> 40)	-			
	2-	lepton	channel				
$p_{\rm T}^Z({\rm GeV})$	0-50	50-100	100-150	150-200	>200		
$\Delta R(b, \bar{b})$		>0.7	7	0.7-1.8	<1.6		
				LC			

ATLAS VH(→bb) Analysis: Systematics

Uncertainty [%]	0 lepton	1 lepton	2 leptons					
<i>b</i> -tagging	6.5	6.0	6.9	Lincertointy [%]	0.10	nton	1 lenton	2 lentons
<i>c</i> -tagging	7.3	6.4	3.6		71			
light tagging	2.1	2.2	2.8	h togging	<u>211</u> 80	0.0	<i>VV 11</i>	86
Jet/Pile-up/ $E_{\rm T}^{\rm miss}$	20	7.0	5.4	Jet/Pile-up/E ^{miss}	19	25	6.7	4.2
Lepton	0.0	2.1	1.8	Lepton	0.0	0.0	2.1	1.8
Top modelling	2.7	4.1	0.5	$H \rightarrow bb BR$	3.3	3.3	3.3	3.3
W modelling	1.8	5.4	0.0	$VH p_T$ -dependence	5.3	8.1	7.6	5.0
Z modelling	2.8	0.1	4.7	VH theory PDF	3.5	3.5	3.5	3.5
Diboson	0.8	0.3	0.5	VH theory scale	1.6	0.4	0.4	1.6
Multijet	0.6	2.6	0.0	Statistical	4.9	18	4.1	2.6
Luminosity	3.6	3.6	3.6	Luminosity	3.6	3.6	3.6	3.6
Statistical	8.3	3.6	6.6	Total	24	34	16	13
Total	25	15	14					

CMS VH(→bb) Analysis: Event Selection

Variable	$W(\mu\nu)H$	W(ev)H	$W(\tau \nu)H$	$Z(\ell \ell)H$	$Z(\nu\nu)H$
$m_{\ell\ell}$	-	-	-	$75 < m_{\ell\ell} < 105$	-
$p_{\mathrm{T}}(j_1)$	> 30	> 30	> 30	> 20	> 60 (> 60, > 80)
$p_{\mathrm{T}}(j_2)$	> 30	> 30	> 30	> 20	> 30
$p_{\rm T}(jj)$	> 100	> 100	> 120	-	> 110 (> 140, > 190)
$p_{\rm T}({\rm V})$	100 - 130(130 - 180 > 180)	[100 - 150](> 150)	< 250	[50 - 100], ([100 - 150], > 150)	_
CSV _{max}	0.898	0.898	0.898	0.679	0.898
CSV _{min}	> 0.5	> 0.5	> 0.4	> 0.5	> 0.5
$\Delta \phi(V, H)$	> 2.95	> 2.95	> 2.95	-	> 2.95
$\Delta R(jj)$	-	-	= 0	-, (-, < 1.6)	-
N _{aj}	= 0	= 0	= 0	_	= 0
N _{al}	= 0	= 0	> 80	-	= 0
E_{T}^{miss}	> 45	> 45	-	< 60.	[100 - 130]([130 - 170], > 170)
$\Delta \phi(E_T^{miss}, jet)$	-	-	-	-	> 0.7 (> 0.7, > 0.5)
$\Delta \phi(E_T^{miss}, E_T^{miss(trks)})$	_	-	-	-	< 0.5
$\Delta \phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	$< \pi/2$	$< \pi/2$	-	-	-
$p_T(\tau)$	-	-	> 40	-	-
$p_T(track)$	-	-	> 20	_	_

CMS VH(→bb) Analysis: Inputs To MVA

Variable
$p_{\rm T}(j)$: transverse momentum of each Higgs daughter
m(jj): dijet invariant mass
$p_{\rm T}(\rm jj)$: dijet transverse momentum
$p_{\rm T}({\rm V})$: vector boson transverse momentum (or $E_{\rm T}^{\rm miss}$)
CSV _{max} : value of CSV for the Higgs daughter with largest CSV value
CSV _{min} : value of CSV for the Higgs daughter with second largest CSV value
$\Delta \phi(V, H)$: azimuthal angle between V (or E_T^{miss}) and dijet
$ \Delta \eta(jj) $: difference in η between Higgs daughters
$\Delta R(jj)$: distance in $\eta - \phi$ between Higgs daughters
N _{aj} : number of additional jets
$\Delta \theta_{\text{pull}}$: color pull angle [34]
$\Delta \phi(E_T^{\text{miss}}, \text{jet})$: azimuthal angle between E_T^{miss} and the closest jet (only for $Z(\nu\nu)H$)
maxCSV _{ai} : maximum CSV of the additional jets in an event (only for $Z(\nu\nu)H$ and $W(\ell\nu)H$)
min $\Delta R(H, aj)$: mimimum distance between an additional jet and the Higgs candidate (only for $Z(\nu\nu)H$ and $W(\ell\nu)H$)
Angular variables: HV system mass, Angle Z-Z*, Angle Z-l, Angle H-jet (only for $Z(\ell \ell)H$)

CMS VH(→bb) Analysis: Systematics

		Yield uncertainty (%)	Contribution to	Removal effect on
Source	Туре	range	uncertainty (%)	total uncertainty (%)
Luminosity	normalization	2.2-4.4	< 2	< 0.1
Lepton efficiency and trigger (per lepton)	normalization	3	< 2	< 0.1
$Z(\nu\nu)H$ triggers	shape	3	< 2	< 0.1
Jet energy scale	shape	2–3	5.0	0.5
Jet energy resolution	shape	3–6	5.9	0.7
Missing transverse energy	shape	3	3.2	0.2
b-tagging	shape	3–15	10.2	2.1
Signal cross section (scale and PDF)	normalization	4	3.9	0.3
Signal cross section (p_T boost, EWK/QCD)	normalization	2/5	3.9	0.3
Signal Monte Carlo statistics	shape	1–5	13.3	3.6
Backgrounds (data estimate)	normlization	10	15.9	5.2
Single-top (simulation estimate)	normalization	15	5.0	0.5
Dibosons (simulation estimate)	normalization	15	5.0	0.5
MC modeling (V+jets and tt)	shape	10	7.4	1.1

LHC Results for VH(→bb): Examples of Distributions

Tevatron Results For VH With H→bb

Summary of 95% CL limits on σ/σ_{SM} @ 125 GeV for Tevatron experiments

Channel	D	0	CI	OF
	Expected	Observed	Expected	Observed
ZH→ll+bb	5.1	7.1	3.9	7.1
ZH→vv+bb	3.9	4.3	3.33	3.06
WH→lv+bb	4.7	5.2	2.8	4.9

- CDF and D0 experiments employ sophisticated multivariate analysis techniques in all searches for VH(→bb)
 - Validity of techniques is confirmed in rigorous checks with data control regions
- Results are based on 9.5-9.7 fb⁻¹ of 1.96 TeV data
- No individual Tevatron experiment has reached 3σ level sensitivity

- ATLAS: 17.6 fb⁻¹ of 7+8 TeV data
 - 95% CL limit on σ/σ_{SM} @ 125 GeV: expected 1.2×SM, observed 1.9×SM
- CMS: 24.3 fb⁻¹ of 7+8 TeV data •
 - 95% CL limit on σ/σ_{SM} @ 125 GeV: expected 0.77×SM, observed 1.80×SM

LHC Results for H→ττ: Systematic Uncertainties

Example of systematic uncertainties on event yields in ATLAS analysis

Uncertainty	$H \rightarrow \tau_{\rm lep} \tau_{\rm lep}$	$H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$H \rightarrow \tau_{\rm had} \tau_{\rm had}$
		$Z \rightarrow \tau^+ \tau^-$	
Embedding	1-4% (S)	2–4% (S)	1-4% (S)
Tau Energy Scale	-	4–15% (S)	3–8% (S)
Tau Identification	-	4–5%	1–2%
Trigger Efficiency	2–4%	2–5%	2–4%
Normalisation	5%	4% (non-VBF), 16% (VBF)	9–10%
		Signal	
Jet Energy Scale	1–5% (S)	3–9% (S)	2–4% (S)
Tau Energy Scale	-	2–9% (S)	46% (S)
Tau Identification	-	4–5%	10%
Theory	8–28%	18–23%	3–20%
Trigger Efficiency	small	small	5%

- CMS analysis has similar systematic uncertainties
 - CMS used 0-jet events to constrain some of the systematic uncertainties

Example of fitted nuisance parameters in CMS analysis

Tau ID & Trigger: $0.0 \pm 8.0\% \rightarrow -5.5 \pm 1.9\%$ $Z \rightarrow \ell \ell$: μ fakes τ_h : $0.0 \pm 30.0\% \rightarrow +10.2 \pm 15.9\%$ Tau Energy Scale ($\mu \tau_h$ channel): $0.0 \pm 3.0\% \rightarrow -0.8 \pm 0.2\%$ Tau Energy Scale ($e \tau_h$ channel): $0.0 \pm 3.0\% \rightarrow -1.3 \pm 0.5\%$

ATLAS: 17.6 fb⁻¹ of 7+8 TeV data

- Best-fit signal strength, $\mu=\sigma/\sigma_{SM}$, @ 125 GeV is $\mu=0.7\pm0.7$
- CMS: 24.3 fb⁻¹ of 7+8 TeV data
 - Best-fit signal strength, $\mu=\sigma/\sigma_{SM}$, @ 125 GeV is $\mu=1.1\pm0.4$

5/26/13

CMS Results for H→ττ

Figure 9: Combined observed and expected $m_{\tau\tau}$ distributions for the $\mu\tau_h$, $e\tau_h$, $e\mu$ and $\tau_h\tau_h$ channels. The distributions obtained in each category of each channel are weighted by the ratio between the expected signal and background yields in the category. The insert shows the corresponding difference between the observed data and expected background distributions, together with the expected signal distribution for a standard-model Higgs signal at $m_{\rm H} = 125$ GeV, with a focus on the signal region.

$$P_S(x) = f_{CB} \cdot CB(x, m, \sigma_{CB}, \alpha, n) + (1 - f_{CB}) \cdot GS \ (x, m, \sigma_G)$$

• Signal model is a sum of Crystal Ball (CB) and Gaussian (GS) PDFs

Searches for $H \rightarrow \mu\mu$: Background Model

 $P_{BG}(x) = f_{BW} \cdot BW(x, M_Z, \Gamma_Z) + (1 - f_{BW}) \cdot P(e^{B \cdot x})$

- Background model is a sum of Breit-Wigner and exponential PDFs
 - No statistically significant biases in fits to simulation and control regions

5/26/13

ATLAS Results for $H \rightarrow \mu \mu$

 No significant deviations are observed for local significance with 20.7 fb⁻¹ of ATLAS data at 8 TeV

Systematic uncertainties in ATLAS $H \rightarrow \mu\mu$ Search

Uncertainty	Upward [%]	Downward [%]
Ren./Fac. Scale	0.1	-0.3
ISR	1.3	-2.5
FSR	-0.4	0.1
PDF	0.2	0.2
Total inclusive	+1.3	-2.6

Source of Uncertainty	Treatment in the analysis
Luminosity	3.6%
Muon Selection Efficiency	0.3-1% as a function of η and p_T
Muon Momentum Scale and Resolution	< 1%
Muon Trigger	< 1%
Muon Track Isolation	< 1%
Pile-up reweighting	< 1%

• Systematic uncertainties for signal normalization

 $P_S(x) = f_{CB} \cdot CB(x,m,\sigma_{CB},\alpha,n) + (1-f_{CB}) \cdot GS \ (x,m,\sigma_G)$

• Signal model is a sum of Crystal Ball (CB) and Gaussian (GS) PDFs

Searches for $H \rightarrow \mu\mu$: Background Model

 $P_{BG}(x) = f_{BW} \cdot BW(x, M_Z, \Gamma_Z) + (1 - f_{BW}) \cdot P(e^{B \cdot x})$

- Background model is a sum of Breit-Wigner and exponential PDFs
 - No statistically significant biases in fits to simulation and control regions

5/26/13