Production of W and Z bosons in association with light and heavy flavour jets at the LHC

M. Vanadia on behalf of the ATLAS & CMS collaborations

Max-Planck-Institut für Physik

 $29^{\rm th}$ May 2013 - $25^{\rm th}$ Rencontres de Blois

Measurement of W/Z+jets production in proton-proton collisions

- High energies, high statistics at the LHC
- Backgrounds for many SM and beyond SM processes
- Test of perturbative QCD predictions
 - e.g. 4-flavour number scheme vs 5-flavour number scheme
 - · probing regions of the phase space where large higher order corrections are expected
- Test of Monte Carlo generators
 - MADGRAPH(LO Matrix Element) + PYTHIA(Parton Shower)
 - ALPGEN(LO) + PYTHIA(PS) or HERWIG(PS)
 - SHERPA(LO+PS)
 - BLACKHAT (NLO cross section calculations)
 - POWHEG(NLO)+ PYTHIA(PS) or HERWIG(PS)
 - $\bullet~\mathrm{MCFM}$ parton level NLO cross section predictions
- Input to Parton Density Functions

Selection and backgrounds

- $W \rightarrow l\nu$ and $Z \rightarrow ll$ decays. High p_T isolated $l = e, \mu$ selected.
- W selection: missing transverse energy and m_T^W jacobian peak
- Z selection: dilepton invariant mass
- Jets reconstructed with anti k_T algorithm Jet Energy Scale and Resolution are dominant sources of uncertainty
- Highest background uncertainties: QCD multi-jet at low n_{jets}, tt at high n_{jets}

3/15

Data / MC

10³

10²

0.5

≥0 ≥1 ≥2 ≥3 ≥4 ≥5

Inclusive Jet Multiplicity, Niet

n_{jets} in W+jets events

ATLAS measurement with 36 pb⁻¹ at $\sqrt{s} = 7$ TeV; Phys. Rev. D85 (2012) 092002; CMS measurement with 36 pb⁻¹ at $\sqrt{s} = 7$ TeV; J. High Energy Phys. 01 (2012) 010

4/15

- Simulations normalised to NNLO W inclusive cross section
- ALPGEN+HERWIG(PS) and BLACKHAT-SHERPA

correctly describe ATLAS data

- MADGRAPH+PYTHIA(PS) correctly describes CMS data
- Results in agreement with scaling hypothesis

Scaling of $(n_{jets} + 1)/n_{jets}$ in Z+jets events ATLAS measurement with 4.6 fb⁻¹ at $\sqrt{s} = 7$ TeV; arXiv:1304.7098v1;

For scaling patterns see arXiv:1208.3676 [hep-ph] Blackhat predictions Phys. Rev. D 82 (2010) 074002 and Phys. Rev. D 85 (2012) 031501

Kinematics of Z+jets events ATLAS measurement with 4.6 fb⁻¹ at $\sqrt{s} = 7$ TeV; arXiv:1304.7098v1;

• Discrepancies in H_T already found in W+jets

- Significative discrepancies for high H_T in Z+jets
- Alpgen too hard
- BLACKHAT-SHERPA $Z+\geq 1$ jet fixed order NLO too soft
- SHERPA has ≈constant offset

$$H_T = \sum_{leptons, jets} |p_T|$$

Kinematics of Z+jets events ATLAS measurement with 4.6 fb⁻¹ at $\sqrt{s} = 7$ TeV; arXiv:1304.7098v1;

$$H_T = \sum_{leptons, jets} |p_T|$$

- MADGRAPH(LO) +PYTHIA in agreement with measurement
- Powheg+Pythia within 10%

only evaluates Z+1-jet at fixed order NLO

- SHERPA (up to 4 partons) within 10%
- Discrepancies less relevant at higher *n_{jets}*
- PYTHIA stand-alone performs better for $p_T^Z > 150 \text{ GeV}$

Double Parton Interactions in W (\rightarrow Inu) + 2 jet events ATLAS measurement with 36 pb⁻¹ at $\sqrt{s} = 7$ TeV; New J. Phys. 15 (2013) 033038 CMS measurement with 5 fb⁻¹ at $\sqrt{s} = 7$ TeV;

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFSQ12028

Given two processes X and Y:

$$\sigma_{X+Y}^{tot}(s) = \sigma_{X+Y}^{SPI}(s) + \sigma_{X+Y}^{DPI}(s)$$
$$\sigma_{X+Y}^{DPI}(s) = \frac{\sigma_X(s) + \sigma_Y(s)}{\sigma_{eff}(s)}$$

- σ_{eff}(s) appr. independent from phase space
 → results can be compared to other experiments
- W+2 jets kinematics is different for SPI and DPI
- *f*^{DPI}: fit to jets momentum unbalance
- SPI template from simulations
- DPI template from dijet data

Result

- $\sigma_{eff}(7\text{TeV}) = 15 \pm 3(\text{stat})^{+5}_{-3}(\text{syst}) \text{ mb}$
- Consistent with measurements in other experiments
- Good agreement with Alpgen+Herwig+Jimmy and Sherpa
- DPI important for many measurements (see ATLAS Wbb)
- Recent preliminary study at high statistics by CMS find good agreement with the MadGraph+Pythia predictions

$W/Z{+}\text{heavy-flavour jets}$

• b-jets tagged using long life-time, high mass of b-hadrons

 \rightarrow secondary vertex (SV) decay lenght, SV mass, impact parameters of tracks, semi-leptonic decays, jet kinematics

- neural network taggers combine all information
- light, c, b jets contributions estimated with fits to discriminating variables

W+b-jets fiducial cross section measurements

ATLAS measurement of W_+ at least one b-jet with 4.6 fb⁻¹ at 7 TeV; arXiv:1302.2929 CMS preliminary measurement of W+2 b-jets with 5.0 fb⁻¹ at 7 TeV; CMS-PAS-SMP-12-026

ATLAS: W+1 b-jet + 0-1 additional jet of any flavour

- $\sigma^{fiducial}(W + 1 \ b jet) =$
 - $5.0\pm0.5(\text{stat})\pm1.2(\text{syst})$ pb vs pred. $3.01^{+0.83}_{-0.62}$
- $\sigma^{fiducial}(W + 1 \ b jet + 1 jet) =$
 - $2.2\pm0.2(\text{stat})\pm0.5(\text{syst})$ pb vs pred. $1.69^{+0.43}_{-0.27}$
- Good agreement with MCFM (5FNS) NLO prediction (Phys. Rev. D 86 (2012) 034021)
- Predictions corrected for DPI with uncertainty assessed from ATLAS measurement
- Measurement differential in b-jet p_T provided

CMS: W + exactly 2 b-jets

- tt is dominant background
- $\sigma^{fiducial}(W + 2b \text{jets}) = 0.53 \pm 0.05(\text{stat}) \pm 0.09(\text{syst}) \pm 0.06(\text{th.}) \pm 0.01(\text{lumi}) \text{ pb}$
- Perfect agreement with MCFM NLO prediction 0.52±0.03 pb (JHEP 03 (2011) 027)

Potential limitations of simulations with massless b-quarks which predict p_T spectra softer than data

W+c fiducial cross section measurement

ATLAS preliminary measurement with 4.6 $\rm fb^{-1}$ at 7 $\rm TeV;$ ATLAS-CONF-2013-045 CMS preliminary measurement with 5.0 $\rm fb^{-1}$ at 7 $\rm TeV;$ CMS-PAS-SMP-12-002

- sensitive to s-quark PDF
- Wc charge anti-correlation
 → very pure sample

Analysis selection

- Reconstruction of $D^{\pm}/D^{*\pm}$ decays in Inner Detectors
 - ATLAS measurement not requiring a reconstructed jet
 - CMS measurement in events with at least one jet
- Selection of $c \rightarrow \mu + X$ decays (CMS only)
- Wc charge anti-correlation
 - \rightarrow Opposite Sign Same Sign (OS-SS)

Signal is only in OS

- Important unc. from c-hadron modelling
- $W^+ + \overline{c}/W^- + c$ and differential measurements provided

$W+c\ results$ ATLAS preliminary measurement with 4.6 $\rm fb^{-1}$ at 7 $\rm TeV;$ ATLAS-CONF-2013-045 CMS preliminary measurement with 5.0 $\rm fb^{-1}$ at 7 $\rm TeV;$ CMS-PAS-SMP-12-002

 s/\overline{d} from W and Z inclusive

The W+c measurements cannot be directly compared due to different phase space

- $\bullet\,$ High statistics $\rightarrow\,$ test for theoretical predictions and Monte Carlo simulations
- In general good agreement found with data
- Some discrepancies are found especially in phase space regions with large higher order corrections
- Experimental results are reaching the sensitivity to NNLO effects
- Measurements are providing input for the PDF fits

W,Z + heavy-flavour jets

- Measurement of the production of a W boson in association with a charm hadron in pp collisions at \sqrt{s} = 7 TeV; ATLAS-CONF-2013-045
- Measurement of the cross-section for W boson production in association with b-jets in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector; arXiv:1302.2929
 - Previous measurement: Phys.Lett. B707 (2012) 418-437
- Measurement of the cross-section for b-jets produced in association with a Z boson at \sqrt{s} = 7 TeV with the ATLAS detector; Phys.Lett. B706 (2012) 295-313

W,Z + jets

• Measurement of the production cross section of jets in association with a Z boson in pp collisions at \sqrt{s} =7 TeV with the ATLAS detector; arXiv:1304.7098v1

Previous measurement: Phys. Rev. D85 (2012) 032009

- Measurement of kt splitting scales in W \rightarrow Inu events at $\sqrt{s} = 7$ TeV with the ATLAS detector; arXiv:1302.1415
- Measurement of hard double-parton interactions in W (\rightarrow Inu) + 2 jet events at $\sqrt{s} = 7$ TeV with the ATLAS detector; New J. Phys. 15 (2013) 033038
- Study of jets produced in association with a W boson in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector; Phys. Rev. D85 (2012) 092002
 - Previous measurement: Phys.Lett. B698 (2011) 325-345
- A measurement of the ratio of the W and Z cross sections with exactly one associated jet in pp collisions at $\sqrt{s} = 7$ TeV with ATLAS; Phys. Lett. B708 (2012) 221-240

W,Z + heavy-flavour jets

- Measurement of the Z/ γ +b-jet cross section in pp collisions at \sqrt{s} =7 TeV; J. High Energy Phys. 06 (2012) 126
 - update in CMS-PAS-SMP-13-004
- Measurement of the production cross section of W bosons in association with two b jets in pp collisions at $\sqrt{s} = 7$ TeV; CMS-PAS-SMP-12-026
- Measurement of associated charm production in W final states at $\sqrt{s} = 7$ TeV; CMS-PAS-SMP-12-002

W,Z + jets

- Measurement of Rapidity Distributions for a Z Boson or a Photon in Association with a Single Jet in pp Collisions at \sqrt{s} = 7 TeV; CMS-PAS-SMP-12-004
- Event shapes and azimuthal correlations in Z + jets events in pp collisions at \sqrt{s} =7 TeV; Phys. Lett. B722 (2013) 238
- Study of the Dijet Mass Spectrum in pp→W+jets Events at √s =7 TeV; Phys. Rev. Lett. 109, 251801 (2012)
- Jet production rates in association with W and Z bosons in pp collisions at \sqrt{s} =7TeV; J. High Energy Phys. 01 (2012) 010
- Measurement of the Polarization of W Bosons with Large Transverse Momenta in W+jets Events at the LHC; Phys. Rev. Lett. 107, 021802 (2011)

BACKUP

$$\begin{aligned} d\sigma_{X+Y}^{tot}(s) &= d\sigma_{X+Y}^{SPI}(s) + d\sigma_{X+Y}^{DPI}(s) \\ d\sigma_{X+Y}^{DPI}(s) &= \frac{d\sigma_X(s) + d\sigma_Y(s)}{\sigma_{eff}(s)} \end{aligned}$$

Factorization of W and 2j system selection efficiencies is assumed:

$$\sigma_{eff}(s) = rac{\sigma_{W0j}\sigma_{2j}}{\sigma_{W+2j}^{DPI}} = rac{N_{W0j}N_{2j}}{f^{DPI}N_{W+2j}} rac{1}{\epsilon_{2j}^{trig}\mathcal{L}_{2j}^{int}}$$

The fraction of DPI events is extracted with a fit to: $|\vec{p}_{T,j1} + \vec{p}_{T,j2}|/(|\vec{p}_{T,j1}| + |\vec{p}_{T,j2}|)$

Kinematics and topology of W+jets production ATLAS measurement with 36 pb⁻¹ at $\sqrt{s} = 7$ TeV; Phys. Rev. D85 (2012) 092002;

Kinematics and topology of W+jets production ATLAS measurement with 36 pb⁻¹ at $\sqrt{s} = 7$ TeV; Phys. Rev. D85 (2012) 092002;

 BLACKHAT-SHERPA disagreement in H_T due to missing ME N_p ≥3

Kinematics and topology of W+jets production ATLAS measurement with 36 pb⁻¹ at $\sqrt{s} = 7$ TeV; Phys. Rev. D85 (2012) 092002;

- BLACKHAT-SHERPA disagreement in H_T due to missing ME N_p ≥3
- A modified treatment including higher-order terms is shown to better reproduce data

n_{jets} in Z+jets events

ATLAS measurements with 36 pb^{-1} at $\sqrt{s} = 7$ TeV; CMS measurement with 36 pb^{-1} at \sqrt{s} = 7 TeV; J. High Energy Phys. 01 (2012) 010

- Ratio measurements reduce uncertainty
- Simulations provide correct description
- In agreement with scaling hypothesis

Vector Boson Fusion (VBF) veto for Z+jets events ATLAS measurement with 4.6 fb⁻¹ at $\sqrt{s} = 7$ TeV; arXiv:1304.7098v1;

VBF events selected requiring $m^{jj} > 350$ GeV and $|\Delta y^{jj}| > 3.0$ In Higgs searches veto on third central jet to reject Z+jets background

 $W \rightarrow e v$ channel

TABLE V. Summary of systematic uncertainties on the cross sections. The uncertainties are shown for $N_{jet} \ge 1$ and $N_{jet} \ge 4$. The sign convention for the IES and lepton energy scale uncertainties is such that a positive change in the energy scale results in an increase in the jet or lepton energy observed in the data.

		Cross-section uncertainty (%)		
Effect	Range	$N_{jet} \ge 1$	$N_{\rm jet} \ge 4$	
Jet and cluster energy scales	2.5–14% (dependent on jet η and p_T)	+9.0, -6.6	+37, -35	
Jet energy resolution	$\sim 10\%$ on each jet (dependent on jet η and p_T)	±1.6	±6	
Electron trigger	$\pm 0.5\%$	+0.6, -0.5	± 1	
Electron reconstruction	±1.5%	+1.7, -1.6	±4	
Electron identification	$\pm 2-8\%$ (dependent on electron η and p_T)	+4.3, -4.0	+10, -9	
Electron energy scale	$\pm 0.3-1.6\%$ (dependent on η and p_T)	±0.6	+1, -3	
Electron energy resolution	<0.6% of the energy	± 0.0	<1	
Pileup removal requirement	\sim 1.5% in lowest jet p_T bin	±1.1	±3	
Multijet QCD background shape	from template variation	±0.7	±11	
Unfolding	ALPGEN VS SHERPA	±1.5	±6	
Luminosity	± 3.4%	+3.8, -3.6	+9, -8	
NNLO cross section for W/Z	±5%	±0.2	<1	
NLO cross section for tī	+7 - 10%	±0.3	± 10	
Simulated tī shape	from samples with more or less ISR	± 0.1	+12, -21	

$Z (\rightarrow ee)$	≥ 1 jet	≥ 2 jets	$\geq 3~{\rm jets}$	≥ 4 jets	$p_{\rm T}^{\rm jet}$ in [30–500 GeV]
electron reconstruction	2.8%	2.8%	2.8%	2.8%	2.6 - 2.9%
jet energy scale, resol.	7.4%	10.1%	13%	17%	4.3 - 9.0%
backgrounds	0.26%	0.34%	0.44%	0.50%	0.2 - 3.2%
unfolding	0.22%	0.94%	1.2%	1.9%	1.4-6.8%
total	7.9%	10.5%	13%	17%	5.5 - 12.0%
$Z (\rightarrow \mu \mu)$	≥ 1 jet	≥ 2 jets	≥ 3 jets	≥ 4 jets	$p_{\rm T}^{\rm jet}$ in [30–500 GeV]
muon reconstruction	0.86%	0.87%	0.87%	0.88%	0.8 - 1.0%
jet energy scale, resol.	7.5%	9.9%	13%	16%	3.2 - 8.7%
backgrounds	0.093%	0.20%	0.41%	0.66%	0.1 - 1.9%
unfolding	0.30%	0.68%	0.52%	1.3%	0.5 - 6.2%
total	7.6%	10.0%	13%	16%	4.4-10.2%

thrust distribution in Z+jets events

$$au = 1 - \max_{ec{n}_{ au}} rac{\sum_i |ec{p}_T^i ec{n}_{ au}|}{\sum_i p_T^i}$$

- \vec{n}_{τ} is the unit vector that maximizes the sum
- *i* are the Z boson and the jets
- τ is 0 in the limit of Z+1-jet back-to-back production
- $\ln \tau$ is a convenient quantity
- $\ln\tau\approx\!\!0$ for spherically isotropic events
- $\ln\tau \to -\infty$ for maximum anisotropy

CMS W/Z+jets scaling

Production of W and Z bosons in association with light and heavy flavour jets

b-jets tagging

b-hadrons have long life-time, high mass, can decay via semi-leptonical modes

- Most advanced taggers combine several quantities (including jet kinematics) in a likelihood or with a neural network
- A discrimant variable is built to statistically separate b-jets from c-jets and light-jets
- Different working points, standard \approx 50% efficiency
- Misedintification rates are at 0.1% level for light-jets, 10% level for c-jets

W+b-jets measurement

ATLAS measurement of W+ at least one b-jet with 4.6 fb⁻¹ at 7 TeV arXiv:1302.2929 Previous measurement on 35 pb⁻¹ Phys.Lett. B707 (2012) 418-437

- W+1,2 jets selected
- CombNN neural network b-tagger
- $n_{b-jets} = 1$
- CombNN shapes different for:
 - b-jets
 - c-jets
 - light jets
- W+b-jets fraction extracted from fit

W+b-jets, W+c-jets, W+light-jets shapes are fitted, other bkg fixed to data-driven predictions

- Dominating uncertainties: JES and JER.
- b-jet efficiency and MC modelling (PDF, scales, p_T^{b-jet}) are relevant
- DPI important effect, mostly 1-jet bin, low p_T^{b-jet} region

ATLAS W+bb fits and background

Fiducial cross-section [pb]						
	1 jet	2 jet	$1{+}2$ jet			
$\sigma_{\rm fid}$	5.0	2.2	7.1			
Statistical uncertainty	0.5	0.2	0.5			
Systematic uncertainty	1.2	0.5	1.4			
Breakdown of system	Breakdown of systematic uncertainty [%]					
Jet energy scale	15	15	15			
Jet energy resolution	14	4	8			
b-jet efficiency	6	4	5			
c-jet efficiency	1	1	0			
light-jet efficiency	1	3	2			
ISR/FSR	4	8	3			
MC modelling	8	4	6			
Lepton resolution	1	1	0			
Trigger efficiency	1	2	2			
Lepton efficiency	1	2	1			
E_{T}^{miss} scale	3	6	2			
E_{T}^{miss} pile-up	2	2	2			
b-jet template	3	5	4			
<i>c</i> -jet template	4	2	3			
light-jet template	0	0	0			
Multijet template	2	2	2			
Total syst. uncertainty	24	23	20			

W+b-jets results ATLAS measurement of W+ at least one b-jet with 4.6 fb⁻¹ at 7 TeV arXiv:1302.2929 Previous measurement on 35 pb⁻¹ Phys.Lett. B707 (2012) 418-437

- cross section $7.1\pm0.5(\text{stat})\pm1.4(\text{syst})$ pb
- MCFM (5FNS) NLO prediction: $4.70^{+0.82}_{-0.65}$ (highest uncertainties scale and DPI)
- Agreement measured-predicted within 1.5 σ
- Alpgen and Powheg predictions (4FNS), scaled to NNLO W inclusive, in good agreement

- Differential measurement vs p_T^{b-jet} (4 bins)
- In the 1-jet bin hints of tension wrt predictions at high p_T^{b-jet}
- Still compatible within uncertainties
- 2-jets bin results in agreement with predicitons

ATLAS W+bb results wihtout single-top subtraction

- muon channel only
- Secondary vertex tagger
- *n*_{b−jets} =2
- Signal and bkg kinematics different
- Simultaneous fit to
 - Leading jet p_T in SR
 - *M*(*J*₃ + *J*₄) in 4-jets CR

- fiducial cross section $0.53\pm0.05(stat)\pm0.09(syst)\pm0.06(theory)\pm0.01(lumi)$ pb
- dominant uncertainties are b-tagging efficiency, mistag rates, JES
- theoretical uncertainties from PDF and scales; no DPI yet
- result in perfect agreement with MCFM NLO prediction of 0.52±0.03 pb

CMS W+2 b-jets kinematics

Z+b-jets measurement

ATLAS measurement of Z+b-jets with 36 $\rm pb^{-1}$ at 7 $\rm TeVPhys.Lett.$ B706 (2012) 295-313 CMS measurement of Z+b-jets with 2.2 $\rm fb^{-1}$ at 7 $\rm TeV$ J. High Energy Phys. 06 (2012) 126 CMS measurement with 5.0 $\rm fb^{-1}$ at 7 $\rm TeV$ CMS-PAS-SMP-13-004

- Result from ATLAS with technique similar to the W+bb one (fit to secondary vertex mass)
- In good agreement with predictions, but statistically limited
- CMS result with 2.2 ${
 m fb}^{-1}$ show possible tension with predictions at 1.8σ level

CMS results with 5 ${\rm fb}^{-1}$

- SSV secondary vertex tagger \rightarrow uses decay lenght significance
- Separately selected Z+1 b-jet, Z+2 b-jets samples
- Z+jets background for Z+1 b-jet
- $t\overline{t}$ relevant in Z+2 b-jets, small ZZ contribution
- $t\overline{t}$ extracted from fit to dilepton mass
- Z+b-jets purity among Z+jets through fit to SVmass

CMS Z+bb kinematics

	μμ (%)		ee	(%)		
	Z+1b	Z+2b	Z+1b	Z+2b		
Uncorrelated						
b-purity	3.0	12.7	3.3	15.1		
tī	1.7	3.8	1.7	4.8		
Dilepton selection	1.0	1.0	2.0	2.0		
MC statistics	0.9	4.2	1.2	5.1		
Correlated						
b-tag efficiency SFs	3.6	9.0	3.6	9.0		
JES	2.0	3.6	2.0	3.6		
Theory	1.8	3.0	1.8	3.0		
Luminosity	2.2	2.2	2.2	2.2		
ZZ	0.4	1.2	0.5	1.4		
JER	0.6	0.7	0.6	0.7		
Pile-up	0.3	0.3	0.3	0.3		
Mistag	0.0	0.1	0.0	0.1		
Tot. Stat. unc.	0.9	4.5	1.0	5.4		
Tot. Syst. unc.	6.3	17.4	6.7	19.8		

CMS W+c differential measurement

