Supernova Neutrinos: Challenges & Opportunities

Sovan Chakraborty MPI for Physics, Munich Blois, France, May 26-31, 2013

TYPICAL PROBLEMS IN SUPERNOVA NEUTRINOS

Supernova (SN) as Neutrino Source

Oscillation of SN Neutrinos

Neutrino Signal at Detectors

Plan of the talk

Supernova (SN) as Neutrino Source

Oscillation of SN Neutrinos

Neutrino Signal at Detectors

Conclusions

23 February 1987 SN 1987A

Supernova one of the most energetic events in nature.

Terminal phase of a massive star ($M > 8 \sim 10 M_{\odot}$)

Collapses and ejects the outer mantle in a shock wave driven explosion.

ENERGY SCALES: ~ 10^{53} erg : 99% energy is emitted by Neutrinos (Energy ~ 10 MeV). TIME SCALE: The duration of the burst lasts ~10 s.

[Fischer et al. (Basel Simulations), A&A 517:A80,2010, 10. 8 M_{sun} progenitor mass]

Neutrino Emission Phases

Neutronization burst

Accretion

Cooling

Large flux differences in Accretion Phase (best for oscillation effects!)

Cooling Phase : Equipartition of luminosity + Mild flavor hiearchy in <E>

[Fischer et al. (Basel Simulations), A&A 517:A80,2010, 10. 8 M_{sun} progenitor mass]

Plan of the talk

Supernova (SN) as Neutrino Source

Oscillation of SN Neutrinos

Neutrino Signal at Detectors

Conclusions

SN v Flavor Transitions

The flavor evolution in matter is described by the non-linear MSW equations:

$$i\frac{d}{dx}\psi_{\nu} = (H_{\nu ac} + H_e + H_{\nu\nu})\psi_{\nu}$$

In the standard 3ν framework

•
$$H_{vac} = \frac{U M^2 U^{\dagger}}{2E}$$

• $H_e = \sqrt{2}G_F \operatorname{diag}(N_e, 0, 0)$
• $H_{vv} = \sqrt{2}G_F \int (1 - \cos \theta_{pq}) \left(\rho_q - \overline{\rho}_q\right) dq$

Kinematical mass-mixing term

Dynamical MSW term (in matter)

Neutrino-neutrino interactions term (non-linear)

Spectral Splits in the Accretion Phase

[Fogli, Lisi, Marrone, Mirizzi, arXiV: 0707.1998 [hep-ph]]

Spectral Splits in the Accretion Phase

[Fogli, Lisi, Marrone, Mirizzi, arXiV: 0707.1998 [hep-ph]]

Matter Suppression

•Neutrinos emitted from spherical source, travel on different trajectories.

Different oscillation phases for neutrinos traveling in different paths.
Strong v-v interaction can overcome trajectory dependent dispersion.

Collective conversion requires : $\mathbf{n}_{e} << \mathbf{n}_{v}$

Collective conversion is matter Suppressed : $\mathbf{n}_{e} \geq \mathbf{n}_{v}$

[Esteban-Pretel, Mirizzi, Pastor, Tomas, Raffelt, Serpico & Sigl, arxiv: 0807.0659]

Dense matter (\mathbf{n}_{e}) dominates over nu-nu interaction (\mathbf{n}_{v}) .

[<u>S.C</u>, Fischer, Mirizzi, Saviano & Tomas PRL 107:151101, 2011 PRD 84:025002, 2011

Sarikas, Raffelt, Hüdepohl & Janka PRL 108:061101, 2012

Dasgupta, P. O'Connor, Ott PRD 85:065008, 2012]

Dense matter (\mathbf{n}_{e}) dominates over nu-nu interaction (\mathbf{n}_{v}) .

[<u>S.C</u>, Fischer, Mirizzi, Saviano & Tomas PRL 107:151101, 2011 PRD 84:025002, 2011

Sarikas, Raffelt, Hüdepohl & Janka PRL 108:061101, 2012

Dasgupta, P. O'Connor, Ott PRD 85:065008, 2012]

Dense matter (\mathbf{n}_{e}) dominates over nu-nu interaction (\mathbf{n}_{v}) .

[<u>S.C</u>, Fischer, Mirizzi, Saviano & Tomas PRL 107:151101, 2011 PRD 84:025002, 2011

Sarikas, Raffelt, Hüdepohl & Janka PRL 108:061101, 2012

Dasgupta, P. O'Connor, Ott PRD 85:065008, 2012]

Predictions are robust when collective effects are suppressed, i.e.:

1) Neutronization burst (t < 20 ms)

large v_e excess and v_x deficit

[Hannestad et al., astro-ph/0608695]

2) Accretion phase (t < 500 ms)

Dense matter term dominates over nu-nu interaction term.

[S.C, Fischer, Mirizzi, Saviano & Tomas

PRL 107:151101, 2011 PRD 84:025002, 2011]

Neutronization burst & Accretion Phase:

Normal Hierarchy (NH):

$$F_{\nu_{e}} = F_{\nu_{x}}^{0}$$

$$F_{\bar{\nu}_{e}} = \cos^{2} \vartheta_{12} (F_{\bar{\nu}_{e}}^{0} - F_{\nu_{x}}^{0}) + F_{\nu_{x}}^{0}$$

Inverted Hierarchy (IH):

$$F_{\nu_{e}} = \sin^{2} \vartheta_{12} (F_{\nu_{e}}^{0} - F_{\nu_{x}}^{0}) + F_{\nu_{x}}^{0}$$

$$F_{\bar{\nu}_{e}} = F_{\nu_{x}}^{0}$$

-

Plan of the talk

Supernova (SN) as Neutrino Source

Oscillation of SN Neutrinos

Neutrino Signal at Detectors

Conclusions

Large Detectors for Supernova Neutrinos

In brackets events for a "fiducial SN" at distance 10 kpc

Next generation Detectors for Supernova Neutrinos

Next-generation large volume detectors might open a new era in SN neutrino detection:

- 0.4 Mton WATER Cherenkov detectors
- 100 kton Liquid Ar TPC
- 50 kton scintillator

See LAGUNA Collaboration, "Large underground, liquid based detectors for astro-particle physics in Europe: Scientific case and prospects," arXiV:0705.0116 [hep-ph]

Oscillations in the Neutronization Burst

SN Bounds on Neutrino Velocity

Violation of Lorentz invariance

[Ellis et al., 0805.0253 & 1110.4848]

The signal would be spread out and shifted in time.

(v-c)/c < 10⁻¹⁴ for linear Lorentz violation (v-c)/c < 10⁻⁸ for quadratic Lorentz violation

[<u>S.C</u>, Mirizzi & Sigl Phys. Rev. D 87, 017302 (2013)]

Earth Matter Effect:

Earth Matter Effect:

 $F_{\bar{e}}^{D} = \sin^{2}\theta_{12}F_{\bar{x}}^{0} + \cos^{2}\theta_{12}F_{\bar{e}}^{0} + \Delta F^{0}\bar{A}_{\oplus}\sin^{2}(12.5\,\overline{\Delta m_{\oplus}^{2}}L/E)$

Normal Hierarchy (NH):

 $F_{\nu_{e}} = F_{\nu_{x}}^{0} (\text{No E.M})$ $F_{\bar{\nu}_{e}} = \cos^{2} \vartheta_{12} (F_{\bar{\nu}_{e}}^{0} - F_{\nu_{x}}^{0}) + F_{\nu_{x}}^{0}$ Inverted Hierarchy (IH): $F_{\nu_{e}} = \sin^{2} \vartheta_{12} (F_{\nu_{e}}^{0} - F_{\nu_{x}}^{0}) + F_{\nu_{x}}^{0}$ $F_{\bar{\nu}_{e}} = F_{\nu_{x}}^{0} (\text{No E.M})$ 0.5

0.0-0.0

0.2

0.4

inverse energy [Dighe, Keil & Raffelt, hep-ph/0304150]

0.8

1.0

1.2

0.6

Earth Matter Effect:

 $F_{\bar{e}}^{D} = \sin^{2}\theta_{12}F_{\bar{x}}^{0} + \cos^{2}\theta_{12}F_{\bar{e}}^{0} + \Delta F^{0}\bar{A}_{\oplus}\sin^{2}(12.5\,\overline{\Delta m_{\oplus}^{2}}L/E)$

Earth Matter Effect:

Earth Matter Effect:

[Borriello, <u>S.C</u>, Mirizzi, Serpico; PRD 86 (2012)]

Rise time Analysis: Hierarchy Determination

Garching 15 Solar Mass

 v_{x} has only NC, \overline{v}_{e} has both CC+NC.

 $\overline{\nu}_e$ more in equilibrium with environment than ν_x

Flux of v_x rises faster than \overline{v}_e

Flux in IH (v_x) rises faster than NH ($v_x \overline{v_e}$)

[Serpico, <u>S.C</u>, Fischer, Hüdepohl, Janka & Mirizzi PRD 85:085031,2012]

Diffuse SN Neutrino Background (DSNB)

SK-doped with Gd would detect few clear DSNB \overline{v} events/year.

v astronomy at cosmic distances !

Conclusions

- Observing SN neutrinos is the next frontier of lowenergy neutrino astronomy.
- Collective effects are suppressed in early SN phases, implying hierarchy sensitivity at large $\theta_{13}.$
- Earth Matter effect: Detectable for Sub-kpc SNe.
- New physics scenarios can be constrained.
- Rise time of SNe signal contains hierarchy information.

SN 20XX A! LOOKING FORWARD FOR THE NEXT GALACTIC SN ! hank You

Appendix: SN antineutrino Flux at Earth

Earth Matter Effect:

[Borriello, <u>S.C</u>, Mirizzi, Serpico; PRD 86 (2012)]

Х

Appendix: Rise time Analysis: Hierarchy Determination Kolmogorov-Smirnov Statistics :

$$\mathcal{D}_{\infty}(K_i^A, K_j^B) = \max_{x \in [0;1]} \left| K_i^A(x) - K_j^B(x) \right|$$

Distance between any randomly picked NH "model" from average IH one is significantly above the one from average NH ones and well expected statistical errors.

Assessing "theory/numerical" error requires detailed study over other simulations with comparable sophistication.