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Supernova	  one	  of	  the	  most	  energe1c	  events	  in	  nature.	  

Terminal	  phase	  of	  a	  massive	  star	  (M > 8~10 M�)	  	  

Collapses	  and	  ejects	  the	  outer	  mantle	  in	  a	  shock	  wave	  driven	  explosion.	  

	  

ENERGY	  SCALES:	  ~	  1053	  erg	  :	  99%	  energy	  is	  emiOed	  by	  Neutrinos	  (Energy	  ~	  10	  MeV).	  

TIME	  SCALE:	  The	  dura1on	  of	  the	  burst	  lasts	  ~10	  s.	  

23 February 1987  SN 1987A  



Neutrino Emission Phases 

[Fischer et al. (Basel Simulations), A&A  517:A80,2010, 10. 8 Msun progenitor mass] 

Neutroniza;on	  burst	  	   Accre;on	   Cooling	  

•  Shock breakout 
•  De-leptonization of  

outer core layers 
•  Duration ~ 25 ms  

•  powered by infalling                          
matter 

•  Stalled shock 

•  Cooling by ν 
diffusion  

Accretion: ~ 0.5 s ; Cooling: ~ 10 s 



Neutrino Emission Phases 

Large flux differences in Accretion Phase ( best for oscillation effects! ) 

Cooling Phase : Equipartition of luminosity +  Mild flavor hiearchy in <E> 

Neutroniza;on	  burst	  	   Accre;on	   Cooling	  

[Fischer et al. (Basel Simulations), A&A  517:A80,2010, 10. 8 Msun progenitor mass] 
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SN ν Flavor Transitions 
The flavor evolution in matter is described by the non-linear MSW equations: 

In the standard 3ν framework 

Kinematical  mass-mixing term 

Dynamical MSW term (in matter) 

( )vac e
di H H H
dx ν νν νψ ψ= + +

( )2 (1 cos )  F pq q qH G dqνν θ ρ ρ= − −∫

2 †  
2vac

U M UH
E

=

2 diag( ,0,0)e F eH G N=

Neutrino-neutrino interactions term 
(non-linear) 



Spectral Splits in the Accretion Phase 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Fogli,	  Lisi,	  Marrone,	  Mirizzi,	  arXiV:	  0707.1998	  [hep-‐ph]	  ]	  

Initial fluxes typical of 
accretion phase at 

neutrinosphere (r ~10 km) 

Fluxes at the end of collective 
effects (r ~200 km) 

Nothing happens in  

Normal Hierarchy (NH) 

Inverted	  mass	  
hierarchy	  (IH)	  

: : 2.4 :1.6 :1.0e e xF F Fν ν ν =



	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [Fogli,	  Lisi,	  Marrone,	  Mirizzi,	  arXiV:	  0707.1998	  [hep-‐ph]	  ]	  

Initial fluxes typical of 
accretion phase at 

neutrinosphere (r ~10 km) 

Fluxes at the end of collective 
effects (r ~200 km) 

Nothing happens in  

Normal Hierarchy (NH) 

Inverted	  mass	  
hierarchy	  (IH)	  

: : 2.4 :1.6 :1.0e e xF F Fν ν ν =

Hierarchy 
sensitive 

for small θ13  

Spectral Splits in the Accretion Phase 



• Neutrinos emitted from spherical source, travel on different 
trajectories. 
• Different oscillation phases for neutrinos traveling in different paths. 
• Strong ν-ν interaction can overcome trajectory dependent dispersion. 

Collective conversion requires :   ne << nν 

Collective conversion is matter Suppressed :   ne     nν	  

Matter Suppression 

[ Esteban-Pretel, Mirizzi, Pastor, Tomas, Raffelt, Serpico & Sigl, arxiv: 0807.0659 ] 

∼ > 



Dense matter (ne) dominates over nu-nu interaction (nν). 

[ S.C, Fischer, Mirizzi, 
Saviano &Tomas  

PRL 107:151101, 2011 
PRD 84:025002, 2011 

 
Sarikas, Raffelt, Hüdepohl & 

Janka 
 PRL 108:061101, 2012 

 
Dasgupta, P. O'Connor, Ott  

PRD 85:065008, 2012] 
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Dense matter (ne) dominates over nu-nu interaction (nν). 

[ S.C, Fischer, Mirizzi, 
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Sarikas, Raffelt, Hüdepohl & 

Janka 
 PRL 108:061101, 2012 

 
Dasgupta, P. O'Connor, Ott  
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Dense 
Matter 
effect 

Suppresses 
Collective 

Oscillations 

Suppression of Collective effects   



Suppression of Collective effects   
Predictions are robust  when collective effects are suppressed, i.e.:  

1) Neutronization burst (t < 20 ms)   
 

large νe excess and νx deficit 
  

2) Accretion phase (t < 500 ms) 
 

 Dense matter term dominates over nu-nu interaction term. 

[S.C, Fischer, Mirizzi, Saviano &Tomas 
  

PRL 107:151101, 2011 
PRD 84:025002, 2011] 

[Hannestad et al., astro-ph/0608695] 



 
 

SN neutrino Flux at Earth
 

 
 Neutronization burst & Accretion  Phase:  
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Large Detectors for Supernova Neutrinos 

In brackets events  for a “fiducial SN”  at distance 10 kpc 

MiniBooNE (200) LVD (400) 
Borexino (80) 

Super-
Kamiokande (104) 
KamLAND (330) 

IceCube (106) 



Next-generation large volume detectors might open a new era in SN 
neutrino detection:!

•   0.4 Mton WATER Cherenkov detectors  

•  100 kton Liquid Ar TPC 

•  50 kton scintillator 

UNO, MEMPHYS, 
HYPER-K!

Mton Cherenkov 

LENA 

Scintillator 

See LAGUNA Collaboration, “Large underground, liquid based detectors for astro-particle 
physics in Europe: Scientific case and prospects,” arXiV:0705.0116 [hep-ph] 
 

Next generation Detectors for Supernova Neutrinos 

GLACIER!

LAr TPC 



Oscillations in the Neutronization Burst 

70 kton 

[I.Gil-Botella & A.Rubbia, hep-ph/0307244] 

Liq Ar TPC 

•   Peak is absent   NH     ( 

•   Peak is seen   IH      ( 

IH 

NH 

) 

) 

[M.Kachelriess et al, hep-ph/0412082] 

I.H. 
N.H. 

 sin2θ13 =     

      Water Cherencov 

1 Mton  

(νe,x e-           νe,x e- ) 



SN Bounds on Neutrino Velocity 
 Violation of Lorentz invariance v! c
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The signal would be spread 
out and shifted in time. 

(v-c)/c < 10-14 for linear 
Lorentz violation 

(v-c)/c < 10-8 for quadratic 
Lorentz violation 

 

[Ellis et al.,  0805.0253 & 1110.4848] 

[S.C, Mirizzi & Sigl 
Phys. Rev. D 87, 017302 

(2013)] 



 
 

SN neutrino Flux at Earth
 

 
 

 Identify “wiggles” in a signal (but good 
E-resolution & high statistics required): 

Liquid scintillators like LENA? 
 [ Dighe, Keil & Raffelt, hep-ph/0304150 ] 

(No E.M)  

(No E.M)  

Earth Matter Effect: 
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 Identify “wiggles” in a signal (but good 
E-resolution & high statistics required): 

Liquid scintillators like LENA? 
 [ Dighe, Keil & Raffelt, hep-ph/0304150 ] 

(No E.M)  

(No E.M)  

 
Recent simulations with  

 
close average energies 

 
of different flavors show 

  
negligible EM effects.  

 

Earth Matter Effect: 



 
 

SN neutrino Flux at Earth
 

 
 

 Identify “wiggles” in a signal (but good 
E-resolution & high statistics required): 

Liquid scintillators like LENA? 
 [ Borriello, S.C, Mirizzi, Serpico; PRD 86 (2012) ] 

Earth Matter Effect: 



Garching 

[Serpico, S.C, Fischer, Hüdepohl, Janka & Mirizzi 
PRD 85:085031,2012 ] 

Rise time Analysis: Hierarchy Determination 
15 Solar Mass 
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 νe more in equilibrium with  
environment than νx 

Flux in IH (νx) rises faster than NH (νx, νe ) 

Flux of νx rises faster than  νe  



Garching 15 Solar Mass 
in Ice-Cube 

Flux in IH rises faster than NH 

Rise time Analysis: Hierarchy Determination 
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[Serpico, S.C, Fischer, Hüdepohl, Janka & Mirizzi 
PRD 85:085031,2012 ] 



Garching 15 Solar Mass 
in Ice-Cube 

Flux in IH rises faster than NH 

Rise time Analysis: Hierarchy Determination 
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[Serpico, S.C, Fischer, Hüdepohl, Janka & Mirizzi 
PRD 85:085031,2012 ] 



Garching 15 Solar Mass 
in Ice-Cube 

Flux in IH rises faster than NH 

Rise time Analysis: Hierarchy Determination 
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Diffuse SN Neutrino Background (DSNB) 

[Beacom & Vagins, hep-ph/0309300 ] 
Approx. 10 core-collapse/sec in the 

visible universe 

mostly from redshift z~1 

Confirm star formation rate 

Window of opportunity 
bkg less than signal  

SK-doped with Gd would detect few clear DSNB ν events/year. 
 

ν astronomy at cosmic distances !  



Conclusions 
•  Observing SN neutrinos is the next frontier of low-

energy neutrino astronomy. 

•  Collective effects are suppressed in early SN phases, 
implying hierarchy sensitivity at large θ13. 

•  Earth Matter effect: Detectable for Sub-kpc SNe. 

•  New physics scenarios can be constrained. 

•  Rise time of SNe signal contains hierarchy information.  
 
 



 

   

SN 20XX A ! 



 
 

Appendix: SN antineutrino Flux at Earth
 

 
 

 Identify “wiggles” in a signal (but good 
E-resolution & high statistics required): 

Liquid scintillators like LENA? 
 [ Borriello, S.C, Mirizzi, Serpico; PRD 86 (2012) ] 

Earth Matter Effect: 
 



Appendix: Rise time Analysis:  
                        Hierarchy Determination 
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FIG. 3: Left Panel: average SN count rate signal in IceCube assuming a distance of 10 kpc, based on the simulations for a
15 M! progenitor mass from the Garching group. Right panel: illustrative example of the binned signal using 2 ms bins with
typical Poisson error estimates accounting for the signal plus photomultiplier background noise, whose average value is shown
as dot-dashed curve. A large ϑ13 is assumed here and in the following (see text for details).

growing energy of νe shown in Fig. 1 contribute to the final shape of the curves. Also, note that despite the relatively
large differences existing over very early timescales (10-20 ms, as already shown in [26]), one can already expect that
integrating the signal over a longer timescales will be needed to beat statistical errors.
It is useful to compare the analogous behaviors for the whole set of models, a task which will be made easier by

a(n irrelevant) rescaling to the rate measured at the end of the time interval considered, R(t)/R(tend). Also, for the
following statistical analysis, it is useful to introduce cumulative time distributions K(x), defined in terms of R(t) as

K(x) =

∫ x tend
0 dtR(t)
∫ tend
0 dtR(t)

, (11)

which is a dimensionless function satisfying K(0) = 0, K(1) = 1, with x ∈ [0, 1]. In Fig. 4, we illustrate the count
rate functions RA

i (t) and the cumulative functions KA
i (x) for the different models considered, with i = 1, . . . , N ≡ 10

labeling the simulation and A (or in general capital latin letters) being the index related to the hierarchy, i.e. A =NH
(red, bottom curves) or A =IH (blue, top curves). In particular, we used the nine 1D SN models shown in Fig. 1 and a
2D SN model with a 15 M! progenitor mass. Note that the difference between the two hierarchies is a shape difference
(as should be clear already from Fig. 1), rather than a mere overall difference in average energies, for example, as in
some past proposals for SN physical diagnostics. Also note that this difference is quite independent of the progenitor
used (most notably of its mass) and, in agreement with expectations, do not show a significant dependence from the
dimensionality of the simulation either.

A. Metric in Function Space

We now turn to assigning a quantitative meaning to the distance among models. To that purpose, we must introduce
some metric in the function space. We choose the so-called D∞ metric, so that the distance between the predictions
(always a number between 0 and 1) writes:

D∞(KA
i ,KB

j ) = max
x∈[0;1]

∣

∣KA
i (x)−KB

j (x)
∣

∣ . (12)

This choice is solely dictated by the standard practice in experimental physics to use Kolmogorov–Smirnov statistic
(which uses that metric) to test whether two underlying one-dimensional distributions differ. We emphasize, however,
that alternative choices are possible and in fact may lead to better discrimination power. Thus, the following results
are to be meant as illustrative. Generically, we find that “typical” distances of a model KA

i from the models having
the same hierarchy (same “A”) but different simulation (different “i”) is smaller than “typical” distances from curves
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FIG. 3: Left Panel: average SN count rate signal in IceCube assuming a distance of 10 kpc, based on the simulations for a
15 M! progenitor mass from the Garching group. Right panel: illustrative example of the binned signal using 2 ms bins with
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For Statistical analysis 
introduce  

Cumulative Time Distribution K(x)  

Count rate (normalized to 
value at 100 ms)   

10 different models, masses 
12 to 40 Msun  

[Blue: IH ; Red: NH] 
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FIG. 3: Left Panel: average SN count rate signal in IceCube assuming a distance of 10 kpc, based on the simulations for a
15 M! progenitor mass from the Garching group. Right panel: illustrative example of the binned signal using 2 ms bins with
typical Poisson error estimates accounting for the signal plus photomultiplier background noise, whose average value is shown
as dot-dashed curve. A large ϑ13 is assumed here and in the following (see text for details).

growing energy of νe shown in Fig. 1 contribute to the final shape of the curves. Also, note that despite the relatively
large differences existing over very early timescales (10-20 ms, as already shown in [26]), one can already expect that
integrating the signal over a longer timescales will be needed to beat statistical errors.
It is useful to compare the analogous behaviors for the whole set of models, a task which will be made easier by

a(n irrelevant) rescaling to the rate measured at the end of the time interval considered, R(t)/R(tend). Also, for the
following statistical analysis, it is useful to introduce cumulative time distributions K(x), defined in terms of R(t) as

K(x) =

∫ x tend
0 dtR(t)
∫ tend
0 dtR(t)

, (11)

which is a dimensionless function satisfying K(0) = 0, K(1) = 1, with x ∈ [0, 1]. In Fig. 4, we illustrate the count
rate functions RA

i (t) and the cumulative functions KA
i (x) for the different models considered, with i = 1, . . . , N ≡ 10

labeling the simulation and A (or in general capital latin letters) being the index related to the hierarchy, i.e. A =NH
(red, bottom curves) or A =IH (blue, top curves). In particular, we used the nine 1D SN models shown in Fig. 1 and a
2D SN model with a 15 M! progenitor mass. Note that the difference between the two hierarchies is a shape difference
(as should be clear already from Fig. 1), rather than a mere overall difference in average energies, for example, as in
some past proposals for SN physical diagnostics. Also note that this difference is quite independent of the progenitor
used (most notably of its mass) and, in agreement with expectations, do not show a significant dependence from the
dimensionality of the simulation either.

A. Metric in Function Space

We now turn to assigning a quantitative meaning to the distance among models. To that purpose, we must introduce
some metric in the function space. We choose the so-called D∞ metric, so that the distance between the predictions
(always a number between 0 and 1) writes:

D∞(KA
i ,KB

j ) = max
x∈[0;1]

∣

∣KA
i (x)−KB

j (x)
∣

∣ . (12)

This choice is solely dictated by the standard practice in experimental physics to use Kolmogorov–Smirnov statistic
(which uses that metric) to test whether two underlying one-dimensional distributions differ. We emphasize, however,
that alternative choices are possible and in fact may lead to better discrimination power. Thus, the following results
are to be meant as illustrative. Generically, we find that “typical” distances of a model KA

i from the models having
the same hierarchy (same “A”) but different simulation (different “i”) is smaller than “typical” distances from curves

Distance between  
any randomly picked NH “model”  

from average IH one  
is significantly above  

the one from average NH ones 
 and well expected statistical  errors.  

 

Assessing “theory/numerical” error 
requires detailed study over other 

simulations with comparable 
sophistication.�

Appendix: Rise time Analysis:  
                        Hierarchy Determination 


