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1. Introduction

The problem of false vacuum decay became famous after the
publication of pioneer papers by Coleman and his colleagues,

[1] S. Coleman, Phys. Rev. D 15, 2929 (1977),
[2] C.G. Callan and S. Coleman, Phys. Rev. D 16, 1762 (1977),
[3] S. Coleman and F. de Lucia, Phys. Rev. D 21, 3305 (1980).

The instability of a physical system in a state which is not an
absolute minimum of its energy density, and which is separated
from the minimum by an effective potential barrier was discussed
there. It was shown, in those papers, that even if the state of the
early Universe is too cold to activate a ”thermal” transition (via
thermal fluctuations) to the lowest energy (i.e. ”true vacuum”)
state, a quantum decay from the false vacuum to the true vacuum
may still be possible through a barrier penetration via macroscopic
quantum tunneling.



Not long ago, the decay of the false vacuum state in a
cosmological context has attracted interest, especially in view of its
possible relevance in the process of tunneling among the many
vacuum states of the string landscape (a set of vacua in the low
energy approximation of string theory). In many models the scalar
field potential driving inflation has a multiple, low–energy minima
or ”false vacuua”. Then the absolute minimum of the energy
density is the ”true vacuum”.

Recently the problem of the instability the false vacuum state
triggered much discussion in the context of the discovery of the
Higgs–like resonance at 125 — 126 GeV (see, eg.,[4] — [7]).

[4] A. Kobakhidze, A. Spencer–Smith, Phys. Lett. B 722, 130,
(2013).

[5] G. Degrassi, et al.,JHEP 1208 (2012) 098.
[6] J. Elias–Miro, et al., Phys. Lett. B 709, 222, (2012).
[7] Wei Chao, et al., Phys. Rev. D 86, 113017, (2012).



In the recent analysis [5] assuming the validity of the Standard
Model up to Planckian energies it was shown that a Higgs mass
mh < 126 GeV implies that the electroweak vacuum is a
metastable state. This means that a discussion of Higgs vacuum
stability must be considered in a cosmological framework,
especially when analyzing inflationary processes or the process of
tunneling among the many vacuum states of the string landscape.

Krauss nad Dent analyzing a false vacuum decay

[8] L. M. Krauss, J. Dent, Phys. Rev. Lett., 100, 171301 (2008);
see also: S. Winitzki, Phys. Rev. D 77, 063508 (2008),

pointed out that in eternal inflation, even though regions of false
vacua by assumption should decay exponentially, gravitational
effects force space in a region that has not decayed yet to grow
exponentially fast.



This effect causes that many false vacuum regions can survive up
to the times much later than times when the exponential decay law
holds. In the mentioned paper by Krauss and Dent the attention
was focused on the possible behavior of the unstable false vacuum
at very late times, where deviations from the exponential decay law
become to be dominat.

The aim of this talk is to analyze properties of the false

vacuum state as an unstable state, the form of the decay law

from the canonical decay times t up to asymptotically late

times and to discuss the late time behavior of the energy of

the false vacuum states.



2. Unstable states in short

If |M〉 is an initial unstable state then the survival probability,
P(t), equals

P(t) = |a(t)|2,

where a(t) is the survival amplitude,

a(t) = 〈M|M; t〉, and a(0) = 1,

and

|M; t〉 = e−itH |M〉,

H is the total Hamiltonian of the system under considerations.

The spectrum, σ(H), of H is assumed to be bounded from below,
σ(H) = [Emin,∞) and Emin > −∞.



From basic principles of quantum theory it is known that the
amplitude a(t), and thus the decay law P(t) of the unstable state
|M〉, are completely determined by the density of the energy
distribution function ω(E) for the system in this state

a(t) =

∫

Spec.(H)
ω(E ) e− i E t dE . (1)

where

ω(E ) ≥ 0 for E ≥ Emin and ω(E ) = 0 for E < Emin.

From this last condition and from the Paley–Wiener Theorem it
follows that there must be (see [9])

[9] L. A. Khalfin, Zh. Eksp. Teor. Fiz. 33, 1371 (1957)[ Sov.
Phys. JETP 6, 1053 (1958)].

|a(t)| ≥ A e−b tq ,

for |t| → ∞. Here A > 0, b > 0 and 0 < q < 1.



This means that the decay law P(t) of unstable states decaying in
the vacuum can not be described by an exponential function of
time t if time t is suitably long, t → ∞, and that for these lengths
of time P(t) tends to zero as t → ∞ more slowly than any
exponential function of t.

The analysis of the models of the decay processes shows that

P(t) ≃ e−ΓMt ,

(where ΓM is the decay rate of the state |M〉), to an very high
accuracy at the canonical decay times t: From t suitably later than
the initial instant t0 up to

t ≫ τM =
1

ΓM

(τM is a lifetime) and smaller than t = T , where T is the
crossover time and denotes the time t for which the
non–exponential deviations of a(t) begin to dominate.



In general, in the case of quasi–stationary (metastable) states it is
convenient to express a(t) in the following form

a(t) = aexp(t) + anon(t), (2)

where aexp(t) is the exponential part of a(t), that is

aexp(t) = N e−it(EM − i
2 ΓM), (3)

(EM is the energy of the system in the state |M〉 measured at the
canonical decay times, N is the normalization constant), and
anon(t) is the non–exponential part of a(t).

For times t ∼ τM :

|aexp(t)| ≫ |anon(t)|,



The crossover time T can be found by solving the following
equation,

|aexp(t)|
2 = |anon(t)|

2. (4)

The amplitude anon(t) exhibits inverse power–law behavior at the
late time region: t ≫ T . Indeed, the integral representation (1) of
a(t) means that a(t) is the Fourier transform of the energy
distribution function ω(E ). Using this fact we can find asymptotic
form of a(t) for t → ∞. Results are rigorous (see [10]).

[10] K. Urbanowski, Eur. Phys. J. D, 54, (2009).



So, let us assume that limE→Emin+ ω(E )
def
= ω0 > 0. Let

derivatives ω(k)(E ), (k = 0, 1, 2, . . . , n), be continuous in
[Emin,∞), (that is let for E > Emin all ω(k)(E ) be continuous and
all the limits limE→Emin+ ω(k)(E ) exist) and let all these ω(k)(E )
be absolutely integrable functions then [10]

a(t) ∼
t→∞

−
i

t
e− i Emint

n−1
∑

k=0

(−1)k
( i

t

)k
ω
(k)
0 = anon(t),

(5)

where ω
(k)
0

def
= limE→Emin+ ω(k)(E ).



Let us consider now a more complicated form of the density ω(E ).
Namely let ω(E ) be of the form

ω(E ) = (E − Emin)
λ η(E ) ∈ L1(−∞,∞), (6)

where 0 < λ < 1 and it is assumed that η(Emin) > 0 and η(k)(E ),
(k = 0, 1, . . . , n), exist and they are continuous in [Emin,∞), and
limits limE→Emin+ η(k)(E ) exist, limE→∞ (E − Emin)

λ η(k)(E ) = 0
for all above mentioned k , then

a(t) ∼
t→∞

(−1) e−iEmint
[(

−
i

t

)λ+1
Γ(λ+ 1) η0 (7)

+ λ
(

−
i

t

)λ+2
Γ(λ+ 2) η

(1)
0 + . . .

]

= anon(t)



From (5), (7) it is seen that asymptotically late time behavior of
the survival amplitude a(t) depends rather weakly on a specific
form of the energy density ω(E ). The same concerns a decay
curves P(t) = |a(t)|2. A typical form of a decay curve, that is the
dependence on time t of P(t) when t varies from t = t0 = 0 up to
t > 20τM is presented in Fig. (1).

The decay curve, which one can observe in the case of the
so–called broad resonances (when (E 0

M − Emin)/Γ
0
M ∼ 1), is

presented in Fig (2).
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Figure: 1. Axes: y = P(t) — the logarithmic scale, x = t/τM . P(t) is
the survival probability. The time t is measured as a multiple of the
lifetime τM . The case (E 0

M − Emin)/Γ
0
M = 50
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Figure: 2. Axes: y = P(t) — the logarithmic scale, x = t/τM . P(t) is
the survival probability. The time t is measured as a multiple of the
lifetime τM . The case (E 0

M − Emin)/Γ
0
M = 1.



Results presented in Figs (1), (2) were obtained for the
Breit–Wigner energy distribution function,

ω(E ) ≡
N

2π
Θ(E − Emin)

Γ 0
M

(E − E 0
M)2 + (Γ 0

M/2)2
, (8)

where Θ(E ) is the unit step function.

The crossover time T for this model:

Γ 0
M T ≃ 8, 28 + 4 ln (

E 0
M − Emin

Γ 0
M

)

+ 2 ln [8, 28 + 4 ln (
E 0
M − Emin

Γ 0
M

) ] + . . . (9)

where (E 0
M − Emin/Γ

0
M) > 10.



3. Instantaneous energy and instantaneous decay rate

The amplitude a(t) contains information about the decay law P(t)
of the state |M〉, that is about the decay rate Γ 0

M of this state, as
well as the energy E 0

M of the system in this state. This information
can be extracted from a(t). Indeed if |M〉 is an unstable (a
quasi–stationary) state then

a(t) ∼= e−i(E 0
M − i

2Γ
0
M) t , (t ∼ τM). (10)

So, there is

E 0
M −

i

2
Γ 0
M ≡ i

∂a(t)

∂t

1

a(t)
, (11)

in the case of quasi–stationary states.

The standard interpretation and understanding of the quantum
theory and the related construction of our measuring devices are
such that detecting the energy E 0

M and decay rate Γ 0
M one is sure

that the amplitude a(t) has the form (10) and thus that the
relation (11) occurs.



Taking the above into account one can define the ”effective
Hamiltonian”, hM , for the one–dimensional sub-
space of states H|| spanned by the normalized vector |M〉 as follows

hM
def
= i

∂a(t)

∂t

1

a(t)
. (12)

In general, hM can depend on time t, hM ≡ hM(t). One meets this
effective Hamiltonian when one starts with the Schrödinger
Equation for the total state space H and looks for the rigorous
evolution equation for the distinguished subspace of states
H|| ⊂ H. The equivalent expression for hM ≡ hM(t) has the
following form [10]

hM(t) ≡
〈M|H|M; t〉

〈M|M; t〉

def
= EM(t) −

i

2
γM(t). (13)



Details can be found in [10] and in

[11] K. Urbanowski, Cent. Eur. J. Phys. 7, (2009),
(see also references one can find therein).

Thus, one finds the following expressions for the energy and the
decay rate of the system in the state |M〉 under considerations, to
be more precise for the instantaneous energy EM(t) and the
instantaneous decay rate, γM(t),

EM ≡ EM(t) = ℜ (hM(t)), (14)

γM ≡ γM(t) = − 2ℑ (hM(t)), (15)

where ℜ (z) and ℑ (z) denote the real and imaginary parts of z
respectively.



Using (12) and (21), (22) one can find that

EM(0) = 〈M|H|M〉, (16)

EM(t ∼ τM) ≃ E 0
M 6= EM(0), (17)

γM(0) = 0, (18)

γM(t ∼ τM) ≃ Γ 0
M . (19)

So, there is EM(t) = E 0
M at the canonical decay time.

Starting from the asymptotic expressions (5) and (7) for a(t) and
using (12) after some algebra one finds for times t ≫ T that



hM(t) t→∞ ≃ Emin + (−
i

t
) c1 + (−

i

t
)2 c2 + . . . , (20)

where ci = c∗i , i = 1, 2, . . .; (coefficients ci depend on ω(E )).
This last relation means that

EM(t) ≃ Emin −
c2

t2
. . . , (for t ≫ T ), (21)

γM(t) ≃ 2
c1

t
+ . . . , (for t ≫ T ), (22)

These properties take place for all unstable states which survived
up to times t ≫ T .

From (21) it follows that limt→∞ EM(t) = Emin.



For the most general form (6) of the density ω(E ) (i. e. for a(t)
having the asymptotic form given by (7) ) we have

c1 = λ+ 1, c2 = (λ+ 1)
η(1)(Emin)

η(Emin)
. (23)

The energy densities ω(E ) considered in quantum mechanics and
in quantum field theory can be described by ω(E ) of the form (6),
eg. quantum field theory models correspond with λ = 1

2 .
The average energy measured at some time interval (t1, t2) (with
t1, t2 ≫ T ) equals

EM(t) =
1

t2 − t1

∫ t2

t1

EM(t) dt ≃ Emin −
c2

t1 t2
+ . . . , (24)



A general form of (EM(t)− Emin)/(E
0
M − Emin) as a function of

time t varying from t = t0 = 0 up to t > T is presented in Figs
(3), (4). These results were obtained for the model considered in
the previous Section and correspond with Figs (1), (2).
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Figure: 3. Axes: y = (EM(t)− Emin)/(E
0
M − Emin), x = t/τM . The

difference of energies (EM(t)− Emin) is measured as a multiple of the
difference (E 0

M − Emin). The case (E 0
M − Emin)/Γ

0
M = 50.
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Figure: 4. Axes: y = (EM(t)− Emin)/(E
0
M − Emin), x = t/τM . The

difference of energies (EM(t)− Emin) is measured as a multiple of the
difference (E 0

M − Emin). The case (E 0
M − Emin)/Γ

0
M = 1.



4. Cosmological applications

Krauss and Dent in their paper [8] mentioned earlier made a
hypothesis that some false vacuum regions do survive well up to
the time T or later. Let |M〉 = |0〉false , be a false, |0〉true – a true,
vacuum states and E false

0 be the energy of a state corresponding to
the false vacuum measured at the canonical decay time and E true

0

be the energy of true vacuum (i.e. the true ground state of the
system). As it is seen from the results presented in previous
Section, the problem is that the energy of those false vacuum
regions which survived up to T and much later differs from E false

0 ,

[12] K. Urbanowski, Phys. Rev. Lett., 107, 209001 (2011),
(see also references one can find therein).



Now, if one assumes that E true
0 ≡ Emin and E false

0 = E 0
M and takes

into account results of the previous Section (including those in Figs
(3), (4)) then one can conclude that the energy of the system in of
false vacuum state has the following general properties:

E false
0 (t) = E true

0 +∆E · Φ(t), (25)

where ∆E = E false
0 − E true

0 and Φ(t) =
E false
0 (t)−E true

0
∆E

≃ 1 for
t ∼ τ false0 < T . Φ(t) is a fluctuating function of t at t ∼ T (see
Figs (3), (4)) and Φ(t) ∝ 1

t2
for t ≫ T .

At asymptotically late times t ≫ T one finds that

E false
0 (t) ≃ E true

0 −
c2

t2
. . . 6= E false

0 . (26)

Similarly

γfalse0 (t) ≃ +2
c1

t
. . . (for t ≫ T ). (27)



Two last properties of the false vacuum states mean that

E false
0 (t) → E true

0 and γfalse0 (t) → 0 as t → ∞. (28)

The basic physical factor forcing the wave function |M; t〉 and thus
the amplitude a(t) to exhibit inverse power law behavior at t ≫ T

is a boundedness from below of σ(H). This means that if this
condition takes place and

∫ +∞

−∞
ω(E ) dE < ∞, (29)

then all properties of a(t), including a form of the
time–dependence at t ≫ T , are the mathematical consequence of
them both. The same applies by (12) to properties of hM(t) and
concerns the asymptotic form of hM(t) and thus of EM(t) and
γM(t) at t ≫ T .

Note that properties of a(t) and hM(t) discussed above do not
take place when σ(H) = (−∞,+∞).



Going from quantum mechanics to quantum field theory one
should take into account among others a volume factors so that
survival probabilities per unit volume per unit time should be
considered. The standard false vacuum decay calculations shows
that the same volume factors should appear in both early and late
time decay rate estimations (see Krauss and Dent [8] ). This
means that the calculations of cross–over time T can be applied to
survival probabilities per unit volume. For the same reasons within
the quantum field theory the quantity EM(t) can be replaced by
the energy per unit volume ρM(t) = EM(t)/V because these
volume factors V appear in the numerator and denominator of the
formula (10) for hM(t).



◮ The general properties of the energy of the system in the
unstable false vacuum state as a function of time t,

E false
0 (t) = E true

0 +∆E · Φ(t), (30)

where ∆E = E false
0 − E true

0 and Φ(t) ≃ 1 for t ∼ τ false0 < T .
Φ(t) is a fluctuating function of t at t ∼ T and Φ(t) ∝ 1

t2
for

t ≫ T .

◮ or, of the energy density ρfalse0 (t):

ρfalse0 (t) = ρtrue0 + D · F (t), (31)

(where D = D∗, ρtrue0 ≡ ρbare0 , F (t) ≃ 1 for t ∼ τ false0 , F (t) is
fluctuating at t ∼ T and F (t) ∼ 1/t2 at t ≫ T ).



Similarly:

◮ The late time behavior of the energy of the system in the false
vacuum state,

E false
0 (t) ≃ E true

0 −
c2

t2
. . . , for t ≫ T , (32)

(where c2 = c∗2 and it can be positive or negative depending
on the model considered),

◮ or, of the energy density ρfalse0 (t):

ρfalse0 (t) ≃ ρtrue0 −
d2

t2
. . . , for t ≫ T , (33)

(where d2 = d∗
2 , ρ

true
0 ≡ ρbare0 ), is the pure quantum effect

following from the basic principles of the quantum theory.

The standard relation is

ρ0 ≡ ρtrue0 =
Λ0

8πG
, (34)

where Λ0 ≡ Λbare is the bare cosmological constant.



5. Final Remarks

The late time properties of the energy of the unstable false vacuum
state discussed in the previous Section give a strong support for
cosmological models using:

◮

ρ0(t) = ρbare0 +
A0

t2
, or equivalently, Λ(t) = Λbare +

B0

t2
,

where A0,B0 are real and can be positive or negative
depending on the model considered;

◮

ρ0(t) = ρbare0 + A1H
2
u or equivalently, Λ(t) = Λbare + B1 H

2
u ,

where A1,B1 are real and Hu is the Hubble parameter. (There
is Hu ≡ Hu(t) ∝

1
t
).

Cosmologies using such parameters are consistent with the
quantum theoretical treatment of unstable vacua.



Open problems:

◮ Properties of the energy E false
0 (t) are determined by the form

of the energy density ω(E ) (The sign of η(1)(Emin) and thus
the sign of c2 in the formula (23) depends on the form of
η(E ) and thus of ω(E )): It is necessary to find at least an
approximate form of ω(E ) for false vacuum states.

◮ As it is seen from Figs (3), (4), the energy E false
0 (t) of the

unstable false vacuum state should fluctuate at transition
times t ∼ T . This means that ρfalse0 (t) and Λ(t) should also
fluctuate at these times.
Question: What are possible consequences of this effect?

◮ If the vacuum is unstable (or even metastable) why our
Universe still exists?

Thank you for your attention


