

XXVth Rencontres de Blois

RESULTS OF THE PIERRE AUGER OBSERVATORY

H. Lyberis¹ on behalf of the Pierre Auger Collaboration

¹ Universidade Federal do Rio de Janeiro (Brazil)

29/05/2013

THE COSMIC RAY SPECTRUM AUGER OBSERVATORY

THE AUGER OBSERVATORY

Hybrid detection

Complementary EAS detection techniques

In the pampa near Malargüe (Argentine) 1400m a.s.l. - latitude: 35°

- Lateral profile
- → Fluorescence detector

Accurate measurements

Resolutions

- angular resolution : 1°-2°
- absolute energy uncertainty : 15%
- relative energy resolution : 16-12%

THE AUGER OBSERVATORY

Fluorescence detector

- 4 eyes 6 telescopes by eye
- Measure the photons generated by the EAS, exciting the N₂ of the air
- Calorimetric measurement of E (negligible dependency of hadronic models)
- 10% of duty cycle (clear moonless nights)
- Low energy extension : HEAT
- Requires a monitoring of the atmosphere (P, T, aerosol content, clouds)
- For hybrid events $E_{sat} = I EeV$

- Fiducial cuts to have the same acceptance for p/Fe , FOV(E)
- Quality cuts on the the profile reconstruction
- Atmospheric conditions

→ exposure determined by MC

THE AUGER OBSERVATORY

Selection of events

- based on the operational tanks configuration
 - → geometrical exposure
- 2 different reconstructions for $\theta < 60^{\circ} \& \theta > 60^{\circ}$

Surface detector

- 1660 surface detectors
- triangular grid (1.5 km)
- covering 3000 km²

- water Cherenkov tanks
- full efficiency @ $E_{sat} = 3 \text{ EeV}$
- low energy extension : infill

SPECTRUM

- pure proton component from X-Gal src
- Pair production in 10¹⁸ 4×10¹⁹ eV

CHEMICAL COMPOSITION

Most straightforward observable to infer composition mean shower depth maximum : X_{max}

- $\hfill {\ensuremath{{\ensuremath{\mathsf{G}}}}$ Direct measurements with FD :
 - X_{max} • RMS(X_{max})
- Comparison with MC simulations
- Measurement of the p/air cross-section
- Other observables :
 - Muon production depth (SD) etc

Further details in R. Engel talk on Thursday

PIERRE

BSERVATORY

ANISOTROPIES : POINT SRC

65

70

Energy Threshold (EeV)

75

55

50

60

Correlation with the VC-V catalog

Publication of the correlation of the 27 highest energy events E > 55 EeV (2007)

the sky is anisotropic at 99% c.l.

ICRC 2011 : 33% (21% from isotropy)

Without comparison with catalog

- development of methods able to detect the intrinsic anisotropy of a data set
- required to be efficient at low statistics

Min(P_{value}) is @ 52 EeV

ANISOTROPIES : POINT SRC

Point sources at low energies

neutron sources

- (while p iso. by B) , @ I EeV : neutron travel 9.2 kpc
- Blind search on the whole sky
- Target search in the direction of bright Galactic γ-ray src form HESS & Fermi (pulsars, PWN, SNR)

no detection \rightarrow upper limits

• For the Auger sky :

$$\Phi_{sky}(E \ge 1 \text{EeV}) \le 0.065 \text{ km}^{-2} \text{yr}^{-1}$$

• For the Galactic center :

$$\Phi_{GC}(E \ge 1 \text{EeV}) \le 0.01 \text{ km}^{-2} \text{yr}^{-1}$$

blind search : Li-Ma significance

ANISOTROPIES : LARGE SCALES AUGER OBSERVATORY

Predictions depends on origin + propagation

- ♀ A/S: drift motion due to B_{reg}
- ♀ Gal: diffuse motion due to B_{turb}

Rayleigh analysis

Control the spurious modulations of the event rate (atmospheric effects, exposure variations)

no strong anisotropies

indication of a smooth transition $\sim 2 \text{ EeV}$

If genuine, phase measurement in independent energy bins is more sensitive than the amplitude

log-likelihood test : $P_{ch} \sim 10^{-3}$

→ Prescription

ANISOTROPIES : LARGE SCALES AUGER OBSERVATORY

3D analysis

- ⊌ No full sky coverage
 - → convolution kernel (CMB-like)
- Dipole compatible with Rayleigh analysis
- Quadrupole analysis
 - \rightarrow compatible with isotropy at 99% CL

upper limits

- ⊌ Test with a galactic scenario
 - Uniformly distributed sources
 - Isotropic and continuous emission

exclusion of the proton scenario

NEUTRINO FLUX

3 sketches of neutrino detection are possible in Auger

Inclined showers

PIERRE

AUGER

1) Regular proton shower

- ♀ 2 kinds of events can be detected
 - «down-going» : all flavours
 - «up-going» : ν_τ

 \bigcirc No detection \rightarrow

Muonic component of the shower

upper limits

- Comparison with models
- Production by the interaction of CRs (GZK processes)
- Transition models

PHOTON FLUX

Possible candidates for the UHECRs

⊖ Top down models

- Explanation to trans-GZK CRs
- Decay of SHDM, Monopoles, Z-burst...
- Photon fraction \geq 10%
 - - Production by the interaction of CRs (GZK processes)
 - Photon fraction \sim 0.1 1%

Predictions strongly model-dependent

- Search in the hybrid data set for
 - Large X_{max}
 - Muon-poor EAS

UPDATES SOON @ ICRC 2013 - RJ

THANK YOU FOR YOUR ATTENTION