Galileo in Padua.
Eighteen fundamental years in perspective

Giulio Peruzzi
Department of Physics and Astronomy
University of Padova

ALICE physics week 2013
Outline

1. Prologue

2. The cultural context
 - Liberal versus mechanical/manual arts
 - The two chief world systems

3. Galileo: new instruments for the New Science
 - 1604: astronomical observations and local motions
 - Parabolic trajectory of projectiles
 - The telescope
 - Sidereus Nuncius
 - The microscope

4. Conclusion ... in perspective
Galileo (1564-1642) left Pisa in the fall of 1592 for what he later rated as *the best eighteen years of his life* (Galileo, letter to Fortunio Liceti, Arcetri - 23 June 1640).
Galileo (1564-1642) left Pisa in the fall of 1592 for what he later rated as *the best eighteen years of his life* (Galileo, letter to Fortunio Liceti, Arcetri - 23 June 1640).

Though too much emphasis is often given to this expression, the years spent in Padua were fundamental because Galileo invented (or improved) instruments and developed researches that are the kernel of his great adult masterpieces (the *Dialogue Concerning the Two Chief World Systems*, 1632, and the *Discourses and Mathematical Demonstrations Concerning Two New Sciences*, 1638).
Prologue

Galileo (1564-1642) left Pisa in the fall of 1592 for what he later rated as *the best eighteen years of his life* (Galileo, letter to Fortunio Liceti, Arcetri - 23 June 1640).

Though too much emphasis is often given to this expression, the years spent in Padua were fundamental because Galileo invented (or improved) instruments and developed researches that are the kernel of his great adult masterpieces (the *Dialogue Concerning the Two Chief World Systems*, 1632, and the *Discourses and Mathematical Demonstrations Concerning Two New Sciences*, 1638).

But to understand the research activity of Galileo in Padua we have to spend a few words on the cultural context of the time.
Cultural context: liberal versus mechanical arts

The definition of **liberal arts** (classical *trivium* - grammar, rhetoric, and dialectic - and the *quadrivium* - arithmetic, geometry, astronomy, and music) can be dated back to Plato and Aristotle writings. They are considered as **the only arts that can produce knowledge**, and it’s not a coincidence that they are performed by free men.

The mechanical (or manual) arts, in contrast to the liberal ones, are only useful to satisfy daily needs but they do not produce knowledge. They are performed by slaves or unfree men.

During the XVth and the XVIth century, starting from Italy but suddenly expanding in the whole Europe, the above distinction was overcome. It was becoming clear for many learned men in contact with craftsmen that there was a lot of knowledge produced in the artisan workshops.
The cultural context: liberal versus mechanical arts

The definition of liberal arts (classical trivium - grammar, rhetoric, and dialectic - and the quadrivium - arithmetic, geometry, astronomy, and music) can be dated back to Plato and Aristotle writings. They are considered as the only arts that can produce knowledge, and it’s not a coincidence that they are performed by free men.

The mechanical (or manual) arts, in contrast to the liberal ones, are only useful to satisfy daily needs but they do not produce knowledge. They are performed by slaves or unfree men.
The cultural context: liberal versus mechanical arts

The definition of liberal arts (classical trivium - grammar, rhetoric, and dialectic - and the quadrivium - arithmetic, geometry, astronomy, and music) can be dated back to Plato and Aristotle writings. They are considered as the only arts that can produce knowledge, and it’s not a coincidence that they are performed by free men.

The mechanical (or manual) arts, in contrast to the liberal ones, are only useful to satisfy daily needs but they do not produce knowledge. They are performed by slaves or unfree men.

During the XVth and the XVIth century, starting from Italy but suddenly expanding in the whole Europe, the above distinction was overcome. It was becoming clear for many learned men in contact with craftsmen that there was a lot of knowledge produced in the artisan workshops.
The cultural context

Liberal versus mechanical/manual arts

Central winch of Brunelleschi’s building yard (ca.1420) for the dome of Florence’s cathedral (it has three velocities and reversal of rotation to work at continuous cycle). Drawing of Leonardo da Vinci, Codice Atlantico.

To project and realize this kind of machine a lot of knowledge is necessary: statics, dynamics, strength of materials.
Central winch of Brunelleschi’s building yard (ca.1420) for the dome of Florence’s cathedral (it has three velocities and reversal of rotation to work at continuous cycle). Drawing of Leonardo da Vinci, Codice Atlantico.
Central winch of Brunelleschi’s building yard (ca.1420) for the dome of Florence’s cathedral (it has three velocities and reversal of rotation to work at continuous cycle). Drawing of Leonardo da Vinci, Codice Atlantico.
Central winch of Brunelleschi’s building yard (ca.1420) for the dome of Florence’s cathedral (it has three velocities and reversal of rotation to work at continuous cycle). Drawing of Leonardo da Vinci, Codice Atlantico.

To project and realize this kind of machine a lot of knowledge is necessary: statics, dynamics, strength of materials.
From these contacts between learned men and craftsmen a new image of “scientist” was born, with a first new evaluation of the instruments. Instruments started to be seen not only as products of knowledge present in manual arts but also as producers of knowledge. In such a welding between contemplative science and experimental science, we can identify one of the distinctive characters of modern natural science.
From these contacts between learned men and craftsmen a new image of “scientist” was born, with a first new evaluation of the instruments. Instruments started to be seen not only as products of knowledge present in manual arts but also as producers of knowledge. In such a welding between contemplative science and experimental science, we can identify one of the distinctive characters of modern natural science.

When Galileo uses his telescope as a scientific instrument, he has well understood the importance of mechanical arts for the development of knowledge. He has faith in an instrument coming from artisan workshops, functional not to distort but to develop eyesight, source of new knowledge, in contrast with the exclusivity of “natural” sight by human eyes of the received view. This is the true revolution that Galileo starts off and emblematically represents, a revolution that is one of the fundamental consequences of the age of Humanism and Renaissance.
The cultural context: the two chief world systems

The two chief world systems were the so-called Aristotelian-Ptolemaic system and Copernican system. The first had its physics, whereas the latter lacked a physics of its own.
Cultural context: the two chief world systems

The two chief world systems were the so-called Aristotelian-Ptolemaic system and Copernican system. The first had its physics, whereas the latter lacked a physics of its own.

At that time, the prevailing conception, supported by Aristotle’s followers, sharply separated celestial phenomena and objects from terrestrial ones, i.e. the physics of Heavens from the physics of Earth.
The cultural context: the two chief world systems

The two chief world systems were the so-called Aristotelian-Ptolemaic system and Copernican system. The first had its physics, whereas the latter lacked a physics of its own.

At that time, the prevailing conception, supported by Aristotle’s followers, sharply separated celestial phenomena and objects from terrestrial ones, i.e. the physics of Heavens from the physics of Earth. Celestial bodies, created *ab inizio* by God, were made of a special substance, a highly perfect quintessence that did not undergo through any change; their perfection was mirrored by the perfection of their eternal circular motions.
Cultural context: the two chief world systems

The two chief world systems were the so-called Aristotelian-Ptolemaic system and Copernican system. The first had its physics, whereas the latter lacked a physics of its own.

At that time, the prevailing conception, supported by Aristotle’s followers, sharply separated celestial phenomena and objects from terrestrial ones, i.e. the physics of Heavens from the physics of Earth.

Celestial bodies, created *ab inizio* by God, were made of a special substance, a highly perfect quintessence that did not undergo through any change; their perfection was mirrored by the perfection of their eternal circular motions.

On the contrary, the sublunar region, including the atmosphere and the Earth, was the scene of change, of life and death, of generation and corruption, and it hosted bodies made of the mixture of the four elements (earth, water, air and fire).
The terrestrial (and sublunar) bodies, according to the proportion of their constituting elements, had their “natural” place at a given height or distance from the centre of the Earth: if they were in a different position, they moved (a “natural” motion) along a straight line, to go back to their natural place.
The terrestrial (and sublunar) bodies, according to the proportion of their constituting elements, had their “natural” place at a given height or distance from the centre of the Earth: if they were in a different position, they moved (a “natural” motion) along a straight line, to go back to their natural place.

The downwards motion of heavy bodies (towards the Earth’s centre) and the upwards motion of flames were explained on the basis of this theory. Earth was the heaviest body, and its natural place was the motionless centre of the cosmos.
The two chief world systems

The physics supporting Aristotelian-Ptolemaic system

The terrestrial (and sublunar) bodies, according to the proportion of their constituting elements, had their “natural” place at a given height or distance from the centre of the Earth: if they were in a different position, they moved (a “natural” motion) along a straight line, to go back to their natural place.

The downwards motion of heavy bodies (towards the Earth’s centre) and the upwards motion of flames were explained on the basis of this theory. Earth was the heaviest body, and its natural place was the motionless centre of the cosmos.

This kind of naïve physics was the physics supporting the so called Aristotelian-Ptolemaic system.
Violent motions

Concerning the motion of projectiles, Aristotelian Physics introduced the difference between natural and violent motions.
Concerning the motion of projectiles, Aristotelian Physics introduced the difference between natural and violent motions.
Violent motions

Concerning the motion of projectiles, Aristotelian Physics introduced the difference between natural and violent motions.

The motion of projectiles was interpreted as the sequence of two distinct motions: first a violent motion, and then a “natural” one.
What about the physics of Copernican system?

Accepting the heliocentric (or better heliostatic) universe of Copernicus meant abandoning Aristotelian physics. But what was to be the physics supporting the Copernican system?
What about the physics of Copernican system?

Accepting the heliocentric (or better heliostatic) universe of Copernicus meant abandoning Aristotelian physics. But what was to be the physics supporting the Copernican system?

A lot of questions and “paradoxes” animated the debate at that time.

G. Peruzzi (Dept. Phys. and Astron.)
Galileo in Padua
22 May 2013
What about the physics of Copernican system?

Accepting the heliocentric (or better heliostatic) universe of Copernicus meant abandoning Aristotelian physics. But what was to be the physics supporting the Copernican system?

A lot of questions and “paradoxes” animated the debate at that time.

Just a few examples:
What about the physics of Copernican system?

Accepting the heliocentric (or better heliostatic) universe of Copernicus meant abandoning Aristotelian physics. But what was to be the physics supporting the Copernican system?

A lot of questions and “paradoxes” animated the debate at that time.

Just a few examples:

- how would birds find their nest again after they have flown from it?
What about the physics of Copernican system?

Accepting the heliocentric (or better heliostatic) universe of Copernicus meant abandoning Aristotelian physics. But what was to be the physics supporting the Copernican system?

A lot of questions and “paradoxes” animated the debate at that time.

Just a few examples:

- how would birds find their nest again after they have flown from it?
- if Earth moves (rotating to the East), how can a stone fall perpendicularly to Earth’s surface?
What about the physics of Copernican system?

Accepting the heliocentric (or better heliostatic) universe of Copernicus meant abandoning Aristotelian physics. **But what was to be the physics supporting the Copernican system?**

A lot of questions and “paradoxes” animated the debate at that time.

Just a few examples:

- how would birds find their nest again after they have flown from it?
- if Earth moves (rotating to the East), how can a stone fall perpendicularly to Earth’s surface?
- why does the Moon revolve around the Earth while both revolve around the Sun in one year?
“Enter Galileo”: a new physics

It is not clear when Galileo adhered to Copernicanism. It is quite likely that he became Copernican in Padua (one of the first evidences of his adherence to Copernicanism lies in a letter to Kepler written on 4th August 1597, in which he wrote: “I adopted Copernicus’ opinion many [?] years ago”).
The cultural context

The two chief world systems

“Enter Galileo”: a new physics

It is not clear when Galileo adhered to Copernicanism. It is quite likely that he became Copernican in Padua (one of the first evidences of his adherence to Copernicanism lies in a letter to Kepler written on 4th August 1597, in which he wrote: “I adopted Copernicus’ opinion many [?] years ago”).

However Galileo was well aware that the Copernican system, unlike the Aristotelian-Ptolemaic system, lacked a physics of its own.
It is not clear when Galileo adhered to Copernicanism. It is quite likely that he became Copernican in Padua (one of the first evidences of his adherence to Copernicanism lies in a letter to Kepler written on 4th August 1597, in which he wrote: “I adopted Copernicus’ opinion many [?] years ago”).

However Galileo was well aware that the Copernican system, unlike the Aristotelian-Ptolemaic system, lacked a physics of its own.

It is not by chance that even in the years preceding the use of the telescope, his researches were devoted to both astronomy and the study of local motions, having in mind the unification of Heaven and Earth physics.
The first mechanical computing device
The first mechanical computing device

1597-98: The “sector” or geometric and military compass
Galileo attacked mechanically a problem he could not solve in any other way [the artillery problem of “making the calibre”].

1597-98: The “sector” or geometric and military compass
Galileo attacked mechanically a problem he could not solve in any other way [the artillery problem of “making the calibre”].

In the course of doing so he came to see that mechanical means could be made available for solving all the practical mathematical problems of the day, much as our practical problems in mathematics are now solved by electronic devices. [Stillman Drake, Essays on Galileo, vol. 3, pp. 5-14]
Inclined plane and water clock

In Aristotle's physics acceleration was irrelevant: falling bodies passed in a very small fraction of time from rest to their own velocity, constant along the motion:

\[\text{velocity} = \frac{\text{weight}}{\text{frictional resistance of the medium}}. \]

Using water clocks (more precise than mechanical clocks at that time) and inclined planes, Galileo discovered (1602-1604) the law of uniform accelerated motions (and, by extrapolation, of the free fall).
Inclined plane and water clock

In Aristotle’s physics, acceleration was irrelevant: falling bodies passed in a very small fraction of time from rest to their own velocity, constant along the motion \[\text{velocity} = \frac{\text{weight}}{(\text{frictional resistance of the medium})}. \]
Inclined plane and water clock

In Aristotle’s physics acceleration was irrelevant: falling bodies passed in a very small fraction of time from rest to their own velocity, constant along the motion [velocity = weight/(frictional resistance of the medium)].

Using water clocks (more precise than mechanical clocks at that time) and inclined planes, Galileo discovered (1602-1604) the law of uniform accelerated motions (and, by extrapolation, of the free fall).
1604: researches on local motions meet astronomy

In October 1604, Galileo not only communicated in a letter to Sarpi his discovery of the law of free fall, but also started the analysis of the appearance of a “new star”.
1604: researches on local motions meet astronomy

In October 1604, Galileo not only communicated in a letter to Sarpi his discovery of the law of free fall, but also started the analysis of the appearance of a “new star”.

In three public lectures, Galileo demonstrated that the star was far beyond the lunar orbit, against the Aristotelian immutability and incorruptibility of the Heavens.
In October 1604, Galileo not only communicated in a letter to Sarpi his discovery of the law of free fall, but also started the analysis of the appearance of a “new star”.

In three public lectures, Galileo demonstrated that the star was far beyond the lunar orbit, against the Aristotelian immutability and incorruptibility of the Heavens.

More explicitly in a short booklet published under a pseudonym in 1605, Galileo conjectured the unification of the physics of Heavens and Earth, also alluding to the Copernican system.

Dialogue of Cecco Rochitti from Bruzene on the New Star
In a few surviving fragments of the written texts of these lectures, Galileo also spoke about a “fantasy” he had.
In a few surviving fragments of the written texts of these lectures, Galileo also spoke about a “fantasy” he had.

Galileo hoped to observe (but he didn’t succeed in this) the relative parallax of the nova when the Earth was at opposite positions along its revolution orbit around the Sun, since he thought that the changing brightness of the nova was due to different distances from the Earth.
In a few surviving fragments of the written texts of these lectures, Galileo also spoke about a “fantasy” he had.

Galileo hoped to observe (but he didn’t succeed in this) the relative parallax of the nova when the Earth was at opposite positions along its revolution orbit around the Sun, since he thought that the changing brightness of the nova was due to different distances from the Earth.

This would have been a definitive proof supporting the Copernican system, against both the Ptolemaic system and the Tychonic hybrid system.
Parabolic trajectory of horizontally launched projectiles

Galileo applied the composition of motions (for a long time applied only to circular motions in the Heavens) to terrestrial motions.
Parabolic trajectory of horizontally launched projectiles

Galileo applied the composition of motions (for a long time applied only to circular motions in the Heavens) to terrestrial motions. On the vertical line, the height of the starting points of balls on an inclined plane. On the left, the accurate measure of the ranges (ca.1607).
Galileo applied the composition of motions (for a long time applied only to circular motions in the Heavens) to terrestrial motions.
Parabolic trajectory of horizontally launched projectiles

Galileo applied the composition of motions (for a long time applied only to circular motions in the Heavens) to terrestrial motions. On the vertical line, the height of the starting points of balls on an inclined plane. On the left, the accurate measure of the ranges (ca.1607).
Galileo did not invent the telescope, but he improved it (from 5/6 to 28/30 magnifications) and used it as a scientific instrument, interpreting what he saw without prejudice, totally free from the authority of the “traditional world view”.

The telescope
Starting his systematic observations in the fall of 1609, Galileo published his results in March 1610 in the *Sidereus Nuncius* (“Celestial or starring messenger or message”), a booklet written in Latin, in which the illustrations were even more revolutionary than the text.
Sidereus Nuncius

Starting his systematic observations in the fall of 1609, Galileo published his results in March 1610 in the *Sidereus Nuncius* (“Celestial or starring messenger or message”), a booklet written in Latin, in which the illustrations were even more revolutionary than the text.

We just mention some of Galileo’s conclusions that dramatically changed the thousand-year-old world view, marking the beginning of modern science.
Starting his systematic observations in the fall of 1609, Galileo published his results in March 1610 in the *Sidereus Nuncius* (“Celestial or starring messenger or message”), a booklet written in Latin, in which the illustrations were even more revolutionary than the text.

We just mention some of Galileo’s conclusions that dramatically changed the thousand-year-old world view, marking the beginning of modern science.
Sidereus Nuncius

Starting his systematic observations in the fall of 1609, Galileo published his results in March 1610 in the *Sidereus Nuncius* (“Celestial or starring messenger or message”), a booklet written in Latin, in which the illustrations were even more revolutionary than the text.

We just mention some of Galileo’s conclusions that dramatically changed the thousand-year-old world view, marking the beginning of modern science.
The surface of the Moon

Like on the Earth, the flecks of light on the Moon's night side and dark spots on the day side indicated the illumination of mountain tops and the shadows cast by crater walls.

The surface of the Moon is like that of the Earth. It is not at all the perfect spherical celestial body described by Aristotelian tradition.
Like on the Earth, the flecks of light on the Moon’s night side and dark spots on the day side indicated the illumination of mountain tops and the shadows cast by crater walls.
The surface of the Moon

Like on the Earth, the flecks of light on the Moon’s night side and dark spots on the day side indicated the illumination of mountain tops and the shadows cast by crater walls.

The surface of the Moon is like that of the Earth. It is not at all the perfect spherical celestial body described by Aristotelian tradition.
The Milky Way was not a complex terrestrial exhalation, as Aristotle would have it, but a jumble of stars.
Milky Way and constellations

The **Milky Way** was not a complex terrestrial exhalation, as Aristotle would have it, but a jumble of stars.

And even **constellations** were made of many more stars than one could see without the telescope.
Jovian Moons

We have a notable and splendid argument to remove the scruples of those who can tolerate the revolution of the planets round the Sun in the Copernican system,
Jovian Moons

We have a notable and splendid argument to remove the scruples of those who can tolerate the revolution of the planets round the Sun in the Copernican system, yet are so disturbed by the motion of one Moon about the Earth, while both travel together around the Sun in the course of a year, that they consider that this theory of the constitution of the universe must be upset as impossible;
Jovian Moons

We have a notable and splendid argument to remove the scruples of those who can tolerate the revolution of the planets round the Sun in the Copernican system, yet are so disturbed by the motion of one Moon about the Earth, while both travel together around the Sun in the course of a year, that they consider that this theory of the constitution of the universe must be upset as impossible; for now we have not one planet only revolving about another, while both traverse a vast orbit about the Sun, but our sense of sight presents to us four stars circling about Jupiter, like the Moon about the Earth while all of them together with Jupiter traverse a great orbit moving around the Sun in the period of twelve years. [Galileo, Sidereus Nuncius]
The microscope

Unlike the telescope, the (composite) microscope was almost surely a Galileo invention (ca. 1610). In 1624, he sent his new invention in Rome to prince Federico Cesi (the founder of the Lincei Academy).
The microscope

Unlike the telescope, the (composite) microscope was almost surely a Galileo invention (ca. 1610). In 1624, he sent his new invention in Rome to prince Federico Cesi (the founder of the Lincei Academy).

The microscope opened a totally new and unexpected world of entities at smaller and smaller scale.
The microscope

Unlike the telescope, the (composite) microscope was almost surely a Galileo invention (ca. 1610). In 1624, he sent his new invention in Rome to prince Federico Cesi (the founder of the Lincei Academy).

The microscope opened a totally new and unexpected world of entities at smaller and smaller scale.

In the figure, a rare Galileian microscope, signed “Eustachio Divini a Roma 1671”, kept at the Museum of History of Physics, Padua University.
We have said at the beginning that the years Galileo spent in Padua were fundamental because he invented (or improved) instruments and developed researches that are the kernel of his great adult masterpieces.
We have said at the beginning that the years Galileo spent in Padua were fundamental because he invented (or improved) instruments and developed researches that are the kernel of his great adult masterpieces. We have just seen some of the fields Galileo worked on but there are many more.
We have said at the beginning that the years Galileo spent in Padua were fundamental because he invented (or improved) instruments and developed researches that are the kernel of his great adult masterpieces. We have just seen some of the fields Galileo worked on but there are many more.

In 2009, on the occasion of the International Year of Astronomy, we organized in Padua an exhibition. The title was “The future of Galileo”, and six sections illustrated the history of physics and astronomy from Galileo up to now.
We have said at the beginning that the years Galileo spent in Padua were fundamental because he invented (or improved) instruments and developed researches that are the kernel of his great adult masterpieces. We have just seen some of the fields Galileo worked on but there are many more.

In 2009, on the occasion of the International Year of Astronomy, we organized in Padua an exhibition. The title was “The future of Galileo”, and six sections illustrated the history of physics and astronomy from Galileo up to now.

The first section was on telescopes; then science of motion; materials science; science of vacuum; studies on light and Sun; and the concluding section “from microscopes to particle accelerators”.

G. Peruzzi (Dept. Phys. and Astron.)

Galileo in Padua

22 May 2013 23 / 26
In the last section there was also a part of ALICE detector and a cross section of LHC tube.
In the last section there was also a part of ALICE detector and a cross section of LHC tube.
In the last section there was also a part of ALICE detector and a cross section of LHC tube.

The exhibition gave an idea of the fil rouge connecting most of Galileo’s researches, results, inventions, conjectures to contemporary physics.
All this, having in mind that the development of science needs a context.
All this, having in mind that the development of science needs a context

- in which there is an education to and for freedom;
All this, having in mind that the development of science needs a context

- in which there is an education to and for freedom;

- in which any “auctoritas” is worthless if not based on facts and on the capacity and humility to interpret those facts;
All this, having in mind that the development of science needs a context

- in which there is an education to and for freedom;
- in which any “auctoritas” is worthless if not based on facts and on the capacity and humility to interpret those facts;
- in which reason and critical mind cannot be renounced;
All this, having in mind that the development of science needs a context

- in which there is an **education to and for freedom**;
- in which any "**auctoritas**" is worthless if not based on facts and on the **capacity and humility** to interpret those facts;
- in which **reason and critical mind** cannot be renounced;
- in which **dialogue and free communication** are essential;
All this, having in mind that the development of science needs a context

- in which there is an education to and for freedom;
- in which any “auctoritas” is worthless if not based on facts and on the capacity and humility to interpret those facts;
- in which reason and critical mind cannot be renounced;
- in which dialogue and free communication are essential;
- in which patience and tenacity are fundamental.
All this, having in mind that the development of science needs a context

- in which there is an education to and for freedom;
- in which any “auctoritas” is worthless if not based on facts and on the capacity and humility to interpret those facts;
- in which reason and critical mind cannot be renounced;
- in which dialogue and free communication are essential;
- in which patience and tenacity are fundamental.

All these features - Galileo knew them well - are not only important for doing science, but also to make us human beings, citizens of the world.
Thank you for your attention