

CERN, 7th December 2007 CERN-KEK committee

LHC LUMINOSITY UPGRADE PLAN

L. Rossi & E. Todesco Magnets, Cryostats and Superconductors Group Accelerator Technology Department, CERN

- Motivations for the luminosity upgrade
- How to remove bottlenecks

- Actions
- Technologies

MOTIVATIONS

- Aim of the phase I (2012)
 - If nominal is reached, go up to the maximum peak luminosity that can be tolerated by experiments without any detector upgrade (so-called ultimate) L~2×10³⁴ [cm⁻² s⁻¹]
 - If nominal is not reached, remove the bottlenecks so that the nominal can be recovered
 - For instance: if beam current is not reachable, increase focusing from $\beta^*=55$ cm to 35-25 cm to reach nominal
- Aim of phase II (2016-17)
 - After some years (~5) at nominal/ultimate luminosity, a big boost is needed
 → factor 5-10 is needed
 - Otherwise the time to halve the statistical error becomes huge)
 - Go up to $L \sim 10 \times 10^{34} \text{ [cm}^{-2} \text{ s}^{-1}\text{]}$
 - This involves detector and injector upgrade
 - All solutions that can be envisaged should be adopted
 - Challenge: energy deposition

A guess of luminosity versus time in absence of phase II upgrade inspired by J. Strait work in 2002

LHC luminosity upgrade - 3

PEAK LUMINOSITY

Peak luminosity equation

- Constants
 - ε_n : transverse normalized emittance (LHC aperture, injectors) [3.75×10⁻⁴ cm rad]
 - γ: relativistic factor (energy of the machine, type of particles) [7461]
 - f_{rev} : revolution frequency (size of the machine) [1.12×10⁴ s⁻¹]
- Beam intensity
 - $N_{\rm b}$: number of particle per bunch $[1.15 \times 10^{11}]$
 - $n_{\rm b}$: number of bunches [2808]
- Beam focusing
 - β : beta function in the IP (transverse size of the beam) [55 cm]
 - *F*: geometrical loss reduction factor [0.86]

BOTTLENECKS

- Present baseline L=10³⁴ [cm⁻² s⁻¹]
- Will we reach the baseline ? Bottlenecks
 - The collimation scheme shows that the impedance is not tolerable
 - If this estimate is confirmed we have either to
 - Keep $\beta^*=55$ cm and reduce beam intensity of $60\% \rightarrow \text{go to } 0.16 \times 10^{34}$ (catastrophe!)
 - Keep the intensity and reduce β =80 cm to be able to open the collimator gap \rightarrow go to 0.76×10³⁴ (much better) today we expect to lose 25% w.r.t. nominal peak luminosity
 - Beam focusing: the triplet aperture is today, by design, the bottleneck
 - LHC was designed to go up to β =25 cm except the IR triplet and D1
 - Enlarge the IR triplet aperture would also ease collimation [R. Assman et al, LIUWG 11 November 2007]
 - Beam current: will we reach the nominal values ?
 - Luminosity ∝ square of the no. of particle per bunch → if we just lose 20% we have 2/3 of the nominal !
 - This parameter is determined both by injectors and by the LHC performances
 - Example: an alternative filling scheme having $n_b=2592$ is being considered $\rightarrow 8\%$ luminosity loss [W. Herr et al, LTC 14 February 2007]
- Experiments can bear up to L~2×10³⁴ [cm⁻² s⁻¹]

PHYSICAL LIMITATIONS: NUMBER OF PARTICLES PER BUNCH

$$L = \frac{f_{rev}\gamma}{4\pi\varepsilon_n} (N_b)^2 n_b \frac{F(\beta^*)}{\beta^*}$$

- Number of particle per bunch N_b is limited by the beambeam effect, i.e., the Coulomb interaction between colliding bunches
 - The beam-beam parameter is defined as $\xi = \frac{r_p}{4\pi} \frac{N_b}{\varepsilon_n} F(\beta^*)$
 - Empirical experience on machines prove that one can run as long as $\xi < 0.015 having three experiments this means <math>\xi < 0.005$
 - For the LHC baseline a safety margin with F=1 (instead of 0.86 as we have) has been taken
 - This gives an upper bound on N_b =1.15×10¹¹
 - Switching off one experiment, we can go up to $N_b=1.7\times10^{11}$ (ultimate), but we need an upgrade of the injectors

PHYSICAL LIMITATIONS: NUMBER OF BUNCHES

$$L = \frac{f_{rev}\gamma}{4\pi\varepsilon_n} (N_b)^2 n_b \frac{F(\beta^*)}{\beta^*}$$

- The number of bunches n_b (i.e. bunch spacing) is limited by different factors, among them the electron cloud effect
 - Nominal n_b =2808 bunches \rightarrow bunch spacing of 25 ns
 - Limits given by simulations and some experiences on machines: shorter spacing has to be excluded larger can be possible
 - Doubling n_b , the bunch spacing becomes 12.5 ns and it looks not feasible (heat load for e-cloud + image current)

F. Zimmermann LTC, 6th April 2005 LHC luminosity upgrade - 7

PHYSICAL LIMITATIONS: FOCUSING

$$L = \frac{f_{rev}\gamma}{4\pi\varepsilon_n} (N_b)^2 n_b \frac{F(\beta^*)}{\beta^*}$$

- The focusing is presently limited by the aperture of the quadrupoles Q1-Q3 around the IP (the so-called triplet)
 - The beta function of the beam in the quadrupoles is $\propto 1/\beta^*$
 - The present aperture of 70 mm limits $\beta^*=0.55$ cm
 - Changing the triplet, one hits the hard limit of the chromaticity correction at

• Nb-Ti triplet $\beta^*=0.17$ cm Nb₃Sn triplet $\beta^*=0.14$ cm

[E. Todesco et al, CARE LUMI-06 J. P. Koutchouk et al., PAC 07]

- If the distance of the triplet from the IP is reduced from 23 m to 13 m (extreme case), one can further improve by ~25%
 - Nb-Ti triplet $\beta^*=0.14$ cm Nb₃Sn triplet $\beta^*=0.11$ cm

PHYSICAL LIMITATIONS: FOCUSING VS GEOMETRICAL FACTOR

$$L = \frac{f_{rev}\gamma}{4\pi\varepsilon_n} (N_b)^2 n_b \frac{F(\beta^*)}{\beta^*} \qquad F(\beta^*) = \frac{1}{\sqrt{1+\phi^2(\beta^*)}}$$

- Luminosity is not $\propto 1/\beta^*$ for $\beta^* < 25$ cm the gain is marginal if the beam current is kept constant
 - Empirical scaling law: larger focusing induces large crossing angle and therefore more diluted collisions [Y. Papaphilippou, F. Zimmermann, Phys. Rev. STAB 10 (1999) 104001]
 - Going to 25 cm one gains
 ~50% w.r.t. 55 cm
 - ϕ is called Piwinski angle ϕ -0.64 for nominal \rightarrow *F*-0.84

$$\phi = \frac{\vartheta(\beta^*)\sigma_z}{2\sigma(\beta^*)} \propto \frac{\sigma_z}{\beta^*}$$

Luminosity versus focusing in case of constant beam current

LHC luminosity upgrade - 9

UPGRADE BASED ON STRONGER FOCUSING (EARLY SEPARATION/CRAB CAVITY)

• Reduce β^* as much as possible

$$L = \frac{f_{rev}\gamma}{4\pi\varepsilon_n} (N_b)^2 n_b \frac{F(\beta^*)}{\beta^*}$$

- Hypothesis: cannot increase bunch charge N_b beyond nominal
- Kill the crossing angle effect \rightarrow set the factor *F*=1 through two means
 - D0: dipole to provide an early separation of the beams but head-oncollision with small crossing angle
 - Crab cavities: RF rotating the bunch to maximize the interaction area

Luminosity versus focusing in case of constant beam current

- If these ideas work, one could gain a factor 4-5 with Nb-Ti or Nb₃Sn, and get to a factor 10 with ultimate intensity
- Challenge: D0 integration, proof of crab cavity

UPGRADE BASED ON LARGER CURRENT (LARGE PIWINSKI ANGLE SCHEME)

$$L = \frac{f_{rev}\gamma}{4\pi\varepsilon_n} (N_b)^2 n_b \frac{F(\beta^*)}{\beta^*} \qquad \qquad \xi = \frac{r_p}{4\pi} \frac{N_b}{\varepsilon_n} F(\beta^*) < 0.015$$

- Reduce *F* and increase N_b keeping the beam-beam limit we will gain in luminosity since it is proportional to $F(N_b)^2$
- Hypothesis: focusing not possible below $\beta^*=25 \text{ cm} \rightarrow F$ is made small by increasing bunch length σ_z by 60% and doubling bunch space

- $N_{\rm b}$ increased by 4.2 \rightarrow $N_{\rm b}$ =4.9×10¹¹ \rightarrow gain a factor 16
- $n_{\rm b}$ decreased by $2 \rightarrow n_{\rm b}=1404 \rightarrow \text{lose a factor } 2$
- Challenges:
 - Upgrade of the injectors needed to provide this large bunch intensity (×4)
 - 50% larger beam current: need long-range beam-beam wire compensation
 - Machine protection, collimation

TECHNOLOGIES: IR TRIPLET

- A larger (longer) triplet
 - Aim: have a larger aperture to be able to go at *β**=25 cm or down to the limit imposed by chromaticity (*β**=14-17 cm)
- Two solutions
 - Nb-Ti magnets around 130 mm aperture, with a total triplet length of 40 m (10 m more than today) to be used for phase I
 - Nb₃Sn magnets, a bit wider, more compact, to be used for phase II
 - Smaller β^*
 - Better tolerance to energy deposition
- General challenges
 - Large aperture, large stress
 - Energy deposition
 - Good field quality

Estimated forces in the coil

TECHNOLOGIES: CRAB CAVITY AND EARLY SEPARATION DIPOLE

- Crab cavity
 - Aim: kill the geometrical reduction factor that reduces luminosity for β^* <25 cm
 - Idea: the bunch is rotated longitudinally to maximize the collision area
 - Status: tested at KEK on **electron machine**: cavity works but no improvement on beam. More investigation and test needed. Scaled up for proton possible but not trivial.
- Early separation dipole
 - Aim: as crab cavity
 - Idea: Have zero crossing angle but separate the beams as soon as possible to avoid parasitic beambeam interaction with a dipole (~5 Tm)
 - Challenges: has to be in the detector, in a high radiation environment
 - It's asmall magnet: you can take as a consumable
 - Status: integration studies ongoing
- Each technologies could not completely set *F*=1 → both could solve it completely

Positions where D0 could be integrated LHC luminosity upgrade - 13

CONCLUSIONS

- Phase I upgrade (~2012)
 - To recover nominal or reach ultimate by being able to go up to $\beta^* < 25$ cm
 - New IR triplet with ~130 mm aperture needed
- Phase II upgrade (~2016)
 - Common features to both schemes
 - Go at least to $\beta^*=25 \text{ cm}$ this already done by phase I
 - Go at least to ultimate bunch charge [1.7 ×10¹¹] this need upgrade of injectors
 - For this we need High FIELD (Gradient) Magnets with heat depo capability
 - Scenario I: early separation, i.e., strong focusing
 - Going to ultimate bunch charge
 - Push to β^* down 14 cm with Nb₃Sn triplet
 - Remove the adverse effect of crossing angle by
 - Crab cavity
 - Early separation dipole High FIELD Magnets with huge heat depo capability
 - Scenario II: Large Piwinski angle
 - Go ~3 times the ultimate bunch charge [4.7 ×10¹¹]
 - Limit with beam-beam wire compensation the effect of larger charge

EXPENDITURE 2007

- 334,240CHF (commissioned research)
- 1,920 CHF Trip Tatsushi Nakamato to RAL (CARE-NED meeting)
- 5,495 CHF Trip Tatsushi Nakamoto to America labs for high field magnet technology
- Balance: 1,847,851 CHF