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The setup: stopping in p+A
collisions
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Inclusive cross sections for protons emitted in 100 GeV proton-—nucleus collisions are used to estimate the stopping
power of nuclear matter for fast nucleons. The typical recoil momentum obtained for a nucleon struck by the center of
a lead nucleus is 4 <10 GeV/e, an order of magnitude greater than in p—p collisions, and an order of magnitude smaller
than in a naive cascade model. Possible implications for high energy heavy ion collisions are discussed.

*The starting point for my entry into (high
energy) heavy ion physics 28 years ago.




A template for the future
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) ) ) 3 Fig. 2. Probability distributions for protons to lose rapidity
Fig. 1. Inclusive cross sections £ do/d°P at P = 0.3 GeV/c, Ay in collisions with protons or with lead nuclei. The dis-

as functions of x for PA — px, obtained from data of ref. tributions were calculated from the data shown in fig. 1 by

(2]. We shall focus on the results for a lead target methods discussed in the text. The solid line ¢®” corresponds
' get. to a uniform probability distribution in x,

—Use p-p data to establish empirical baseline
—Understand the role of geometry




Extracting the most from the data

*Classic example of
how to extract
information from an
experimental
measurement. ey Ry e

Collisions with outer
half of lead nucleus

Collisions with whole
lead nucleus
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Fig. 3. Extrapolated probability distributions for rapidity
loss of protons striking lead nuclei. The dashed lines are the
extrapolated portions, The constraint that the normalized
total, central, and peripheral inclusive cross sections should
all be smooth makes the extrapolations nearly unique.,
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See table 1 for more information

Measurement of “centrality” dependence
of stopping with hybrid spectrometer

6.06 for a 200 GeV/c proton beam All distributions are normalized to umty




NA49 Proton & Neutron

Projectile component of net proton spectrum
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 After 3 collisions, neutron & proton similar.

* See talk by A. Te1 from E941 1n parallel session.




E910 - Projectile Fragmentation
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“Pictures” of p-A Dynamics

* Color dipole model
— Excitation via qq — q string. N 0 a
— + string overlap (Ropes) ?? ®— '_:_‘.:!‘_:*_> —0 -

 Constituent quark model
—Valence quarks relevant DOF.
—Additive or not ?

 Resonance Model
—A, N*, p excitation, decay.

* Critical issue: (talk focus) how
does proton respond ?

— Esp: in first few collisions

 How does response affect final
state observables ?




From p-p to p-A

* (more) rigorous model of p-p: “topological” expansion
two-string Diquark splitting Junction

Increased “breakup” of proton

* Possible double scattering diagrams
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Proton more efficiently broken up ?



A different kind of stopping:

stopping high-momentum
quarks and gluons in cold
nuclear matter



“Stopping” quarks in nuclei

current current
quark jet i quark jet

R,
L
f’x :»?\ final state final state
= interaction interaction
NN

> — >
' spectator spectator

system » - system

*Study the energy loss of quarks (?) in the
target using nuclear semi-inclusive deep
inelastic scattering
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“Stopping” quarks in nuclei

ez = fraction of
quark energy
carried by
hadron

eClear A-
dependent
reduction in
yield of high-z
hadrons

*But physics is
complicated

=hadronization
(pre-hadrons)




“Stopping” quarks in nuclei

*Weak Q2
dependence

e “Stopping”
decreases with
iIncreasing
quark energy.




“Stopping” quarks in nuclei

zg; < 0.005,

TB; > 0.03,
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E665: beyond leading hadron

I/N, (dN,/dz)
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A different kind of stopping:

stopping high-momentum
quarks and gluons in HOT
nuclear matter



Jet probes of the quark gluon plasma

*Use jets from hard
scattering processes
to directly probe the
quark gluon plasma
(QGP)

e Key experimental question:

=How do parton showers in quark gluon
plasma differ from those in vacuum?

e Use vector bosons -- for which the QGP is
transparent -- to calibrate hard scattering
rates in Pb+Pb collisions. e



Hard Scattering in p-p Collisions

$ ATLAS .
’ EXPERIMENT [T ‘

67576,

From Collins, Soper, Sterman
Phys. Lett. B438:184-192, 1998
Q* Q
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* Factorization: separation of o into
— Short-distance physics: O ab
— Long-distance physics: @’s 19



PQCD - Single Hadron Production

Add fragmentation to hadrons Phys. Rev. Lett. 91, 241803 (2003

f‘; 1 a)
> 10"
A —(q)a/A 3 107
0
£ - } PHENIX Data
dab o - — KKP NLO
w0 — Kretzer NL
E o Kretzer NLO
B \(I)b/B % 10°
10"
10'8_ 5
9 W0E ' ' ' b)
‘6 20 e [ | | I I l
O \b 0_ ....... r— I
Zfdx dx, 0, 4(x,, 0%, W), 5(x,,0%,0) 3 :4213—
A E ¢)
D, (z,0°,u) dé § 2 ;_data vs pQCD KKP
7T At § 0 %
_ T 4FE Kretzer
e D(z) - fractional momentum g 2f M—
0 = 9

dist. of particles created by _ _ _
outgoing quark or gluon ’ ’ O (GeVie)




“det quenching”, CA. 2002(?)

v 200 GeV Au-Au, Cent
e 200 GeV Au-Au, Periph I Calculations with
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°In the days of jet quenching innocence ...




Single/di-hadron suppression w/ control
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More progress ...

PHENIX Au+Au (central collisions):
[ Direct y :
A 0 Preliminary ; ¢ -10% centra === Armesto et al. (l)

(] n
GLV parton energy loss (dNdy = 1100) k [:] van Hees et al. (Il)

% 3/(2rT) Moore &

12/(2nT) Teaney (lll)

10 12 14 16 18 20
p; (GeVic) p, [Gevic]

* Additions of photon control measurement
and heavy quark suppression provide
stronger evidence for quenching

=But heavy quark results were a challenge
to theory

23



Quenching “sees” the geometry
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Into the wilderness ...



From Quark Matter 2005

 For PHENIX reaction plane resolution & chosen
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e Even without subtracting flow contribution, a dip
Is seen for central collisions.




Jet Quenching, Medium Response(?)

So what about these features in the data?

>

o
,
K. 7%

 One general comment (as someone who has
worked on these measurements)

— Doing these analyses with jet “triggers” instead
of hadrons will help tremendously

— Both at RHIC and LHC
27



STAR: 3-hadron correlations

 Data look pretty clear, even to a skeptic ...

28



The Ridge: new insights

PHOBOS preliminary e A¢(J+R)
—e— Au+Au 0-10% ’ 0 1.3<lAn<1.8
a 0.7<lAnl<1.3
A 0.2<lAn<0.7

PYTHIA v6.325

* Ridge extends over loooooong range in AnI
ts?

e How close is the A¢ distribution to that of |
— A crucial question to be answered (quantitatively)

 Momentum and flavor dist. characteristic of
medium.

— (data not shown for brevity)



Out of the wilderness ...



Dijet asymmetry
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For more central collisions, see:
—Change in distribution of dijet asymmetry
—While no change in the distribution of A

=Except for combinatoric pairs in central




dependence
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Pb+Pb: Z production (2)

ATLAS
Pb+Pb \s,, =2.76 TeV
Data 2011

Pb+Pb s, =2.76 TeV

Data 2011 L, = 0.15 nb’’

Centrality 0-80%

*Z- 1l [ Model $0-5% (x 1
©5-10% (x
A10-20% (x5
W20-40%
V¥40-80%

e Compare Pb+Pb Z rapidity distributions
(minimum-bias) and pT spectra to PYTHIA
scaled to NNLO calculations

—No nuclear PDFs

= Nuclear PDF effects <~ 20%
34



Jet radius dependence of Rcp

{ { { - - .
pT e et Sl Significant cancellation of correlated errors

.9 0-10 % Centrality
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T i
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N

38 < pT<44 GeV
P —

ATLAS Prelilminary
40 50 60 70 100 200
p, [GeV]

e Evaluate jet radius dependence of R¢p
— Modest but significant variation of Rcp

—Less suppression for larger R
=An indication of jet broadening?




Differential jet suppression

Edet=o.14nb'1 5-10% ] [ anti-k, R=02 10-20% ] [
E Pb+Pb|s,, =2.76 TeV| 1k ATLAS preliminary { |

150 200 150 200
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=15t measurement of differential jet
quenching using jets.




Inclusuvejet fragmentation
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Inclusive jet fra
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 First observation of modified parton shower in
inclusive jets

=Not only seeing “left over” unquenched jets.
38




Jet fragmentation comparison

Fragmentation function comparison

- CMS Preliminary L, = 140 ub™ ,
*— CMS 0-10% / 50-100% | - e CMS, 0-10%/50-100%
*  ATLAS 0-10% / 60-80% | 25 ¢ ATLAS, 0-10%/60-80%
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Note: Only one set of syst. uncertainties shown: Good agreement
Depletion from 3-4GeV to 40-50GeV (2-3% of total jet energy)
Enhancement below 3-4GeV (~ 2% of jet energy)




Y-jet momentum balance
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=Substantial change in y-jet balance
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p+Pb @ LHC the next frontier

CATLAS
4 EXPERIMENT
http://atlas.ch

3-jet p+Pb event

Run: 217946
Event: 17699600
Date: 2013-01-20

Pb

4
E, = 85 GeV
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Summary, Perspectives



Quark stopping in QGP? No!
A partonic jet shower in medium

AE,

Leading parton:
Transfers energy to medium by elastic collisions

1 (inside and outside jet cone

Radiated gluons (vacuum & medium-induced):
Transfer energy to medium by elastic collisions
Be kicked out of the jet cone by multiple scatterings after emission

*Jet quenching not as simple as we
originally imagined ...




Summary

Long and venerable history in particle
physics of studying “stopping” in
strongly interacting “media”

— Laying the groundwork for
studying jet quenching in the
quark gluon plasma

= Still, a very complicated problem
— We have left the wilderness

= But we are not out of the woods yet

42



Apropos to this workshop

My first interaction with Wit was in an
8.03 recitation in 1982.

— Then 8.05 in 1983.

e We have interacted innumerable times
over the many years in between.

= And our paths have crossed continually

e p-A physics has been and will continue
to be an important part of my career.

Thank you, Wit
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