

Dihadron Correlations, flow, and jets: Quo Vadis?

James Dunlop

Acceptance, acceptance

PHOBOS, Phys. Rev. Lett. 104, 062301 (2010)

- Cleanest measurement at RHIC: PHOBOS
- Why? Acceptance allows for long-range vs. short-range

Ridge-ology

STAR, Phys. Rev. Lett. 95 (2005) 152301

- First found as a "discrepancy" between analyses
 - Earlier measurements did not attempt to correct Δη triangular acceptance imposed by η cuts: deemphasized high-η correlation structure

"Hard" Ridge

• d+Au used as reference, no sign of long-range structure

- Attempted factorization into broadened dAu-like peak ("jet") and long-range structure ("ridge"), after subtracting v₂.
- Works to some level for harder triggers; factorization not so clear once triggers become softer, and "jet-like" peak widens further

"Jet-like" yield

 $3 < p_T^{trig} < 6 \text{ GeV/c}$ $1.5 < p_T^{assoc} < p_T^{trig}$

- "Jet-like" yield invariant over systems
 - Determined 2 ways:
 - $\Delta \phi$ peak, by subtracting 1.78 < $|\Delta \eta|$ < 0.78 from $|\Delta \eta|$ < 0.78
- Δη peak, subtracting flat background 1.78 <|Δη|<0.78 from |Δη|<0.78
 17 May 2013
 Dunlop pA MIT

A note on "jet-like" peak widths

STAR, Phys. Rev. C 85, 014903 (2012) Au+Au 200 GeV (0-12%) Pythia 62 GeV d+Au 200 GeV Cu+Cu 62 GeV Pythia 200 GeV Cu+Cu 200 GeV Au+Au 62 GeV Au+Au 200 GeV ሏø width 1.5 GeV/c < p_T^{assoc}< p_T^{trig} $3 < p_{\tau}^{trig} < 6 \text{ GeV/c}$ $3 < p_{\tau}^{trig} < 6 \text{ GeV/c}$ 0.6 $1.5 \text{ GeV/c} < p_{\tau}^{assoc} < p_{\tau}^{trig}$ An width °° 3 3.5 4 4.5 2.5 5 5.5 1

- Widths of peaks are sizeable, and p_T^{T} and N_{part}^{10} dependent
- Separation of "jet-like" from longer range problematic in STAR at low p_T: only a few sigma range, even pushing to limits of acceptance

Low p_{T}

- No clear separation of long-range and short-range
- Multi-parameter fit to $\Delta\eta$ -independent v_1 and v_2 , 2-d Gaussian + offsets, narrow exponentials, a $\Delta\phi$ independent Gaussian, and away-side modulation in $\Delta\eta$

17 May 2013

Alternative picture from fit model

 Dramatic widening and amplitude increase of same-side 2-d Gaussian, accompanied by increase in v₁

Also: no sign of v₂ in most central collisions

- One fit model. Introduction of v_n into model picks up strength from Gaussian, esp. in v₃, and readjusts v₁ and v₂
- Can larger η acceptance distinguish?
 - iTPC upgrade will push to $\Delta \eta \sim 3$. Also can use FTPC's at $\eta \sim 2.5-4$.

Back to triggered data: V_n

STAR, Phys. Rev. C 85, 014903 (2012) $< p_T^{trig} < 6 \text{ GeV/c}$ 1.5 GeV/c $< p_T^{assoc} < p_T^{trig}$

17 May 2013

An attempt to measure v_3 at low p_T

- Assume: no jet-like peak at all $\dot{a}t \text{ low } p_T$, just fit to harmonics
- Strong dependence on $|\Delta \eta|$
 - N.B. 3 large points from 3 different analysis techniques, including event planes of FTPC, TPC, and 2-particle correlations with large |Δη| imposed

17 May 2013

Back to d+Au

Actual published figure from STAR, Phys. Rev. Lett. 91 (2003) 072304

- 2003: d+Au just like p+p at midrapidity
- N.B.
 - |η|< 0.7</p>
 - |Δη|<1.4
 - No correction for triangular acceptance
 - Au+Au corrected for v₂ in bottom panel
 - d+Au corrected for (flat) underlying event

Full 2-d correlations in d+Au

F. Wang, RBRC workshop Apr. 2013

$\Delta \phi$ projections in different $\Delta \eta$ (FTPC mult. -3.8< η <-2.8 as centrality)

F. Wang, RBRC workshop Apr. 2013

Ridge in d+Au?

F. Wang, RBRC workshop Apr. 2013

• Very little sign of a ridge at large $|\Delta \eta|$ in d+Au

New paradigm of higher harmonics as explanation for long-range $\Delta\eta$ correlations

But multiple complications have led to interpretational difficulties: need acceptance

Distinguish "long-range" from "short-range", if that is even meaningful

Is short-range from jets? Or $\Delta\eta$ -dependent v_n? "Long-range" not guaranteed to be uniform in $|\Delta\eta|$ Probably need to look in more detail at $\Sigma\eta$ Acceptance of RHIC experiments on the edge of distinguishability, esp. at low p_T where short-range peak is wide

Signal of a ridge structure in d+Au much weaker at RHIC than at LHC