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“Ridge” in pp collisions 

Unexpected ridge-like correlations in high multiplicity pp! 

pp N>110, 1<pT<3 GeV/c 
September, 2010 

Two-particle Δη-Δϕ correlation 
Opportunity of studying novel QCD  
phenomena opened up by the LHC 

Planar particle emission 

Not in minimum bias pp or pp MC models 
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High multiplicity in pp and AA 

p p 
Pb Pb 

Quark Gluon Plasma (QGP) 

High particle density achieved in both pp and PbPb 
Is there any similarity between them? 
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“Ridge” in pp and AA collisions 

JHEP	  09	  (2010)	  091	  

arXiv:1201.3158!
ηΔ

-4
-2

0
2

4

φΔ

0

2

4

φ
Δ

 d
η

Δd
pa

ir
N2 d

tri
g

N1 1.2
1.4
1.6
1.8

CMS Preliminary 35-40%
 = 2.76 TeVNNsPbPb  

JHEP 07 (2011) 076!
EPJC 72 (2012) 2012 !

PbPb 2.76 TeV pp 7 TeV, N>110 

p p 
Pb Pb 



5 

“Ridge” in pp and AA collisions 
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p p 
Pb Pb 

Initial-state geometry  
+  

collective expansion 

Elliptic flow: 
cos(2Δϕ) 

Physical origin of pp ridge  
is not completely clear 

“Smoking gun” of a strongly  
interacting QGP liquid! 

PbPb 2.76 TeV pp 7 TeV, N>110 
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“Ridge” in pA collisions? 

JHEP	  09	  (2010)	  091	  
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PbPb 2.76 TeV 

p p 
Pb Pb 

? 

p Pb 

What if colliding a proton and a nucleus?  
Is there a ridge? how big is it and what makes it?  

pp 7 TeV, N>110 



CERN Site 

Lake Geneva 

ATLAS 

CMS 

LHCb 

ALICE 

Large Hadron Collider (LHC) 
(27 km circumference)	  

²  pp 7 TeV, 8TeV 
² PbPb 2.76 TeV (14 x RHIC) 

²  pPb 5.02 TeV 
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CMS experiment at the LHC 

EM Calorimeter (ECAL) 
Hadron Calorimeter (HCAL) 

Beam Scintillator Counters (BSC) 

Forward 
Calorimeter 
(HF) 

Muon System 

Tracker 
(Pixels and Strips) 

Unprecedented kinematic range and acceptance 



9 

Proton-nucleus collisions at the LHC 

2012 pilot run (8 hours): 1 µb-1 
 

2013 nominal run (3 weeks): 31 nb-1 

(18 nb-1 for pPb and 13 nb-1 for Pbp) 

High-multiplicity pPb event 

418 

<Ntrk
offline >~40 for MB pPb

Proton: 4 TeV 
Pb: 1.58 TeV/nucleon 

ycm=0.46 

√sNN = 5.02 TeV Center-of-mass energy: 

z 

60 billion collisions 
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2012 pPb pilot run at the LHC  

Interaction rate of 200 Hz, all two million MB pPb events collected 

<Ntrk
offline >~40 for MB pPb

<Ntrk
offline >~15 for MB pp

Much easier to reach high multiplicity in pPb, as expected 
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2012 pPb pilot run at the LHC 
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Submitted in October, 2012 
(one month after data taking) 

“Expectedly”, a ridge also in pPb! 
But somewhat surprisingly strong! 

top 3% central 
~ 60K events 

2 million MB events total 
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A complete picture of ridge correlations 

Is there a common origin of the ridge in all systems?  
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“Perfect Liquid” or Gluon Condensate? 

PRL 110 (2013) 012302 

Ø  Initial-state geometry related or not? 
Ø  Final-state interaction or quantum interference? 

Glasma graphs 

BFKL 
Mini-jet 

Intrinsic gluon collimation 
from glasma diagram (CGC) 

K. Dusling, R. Venugopalan:  
arXiv:1210.3890 

Hydrodynamics 
Initial-state asymmetry 
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2013 pPb nominal run at the LHC  
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Sampled full 31 nb-1 luminosity (60 billion collisions) 

High-multiplicity trigger in pPb at CMS 

Ø  Powerful high-level trigger 
farm: 16K CPU cores 

Ø  Online tracking and 
vertexing to avoid pileup 

Interaction rate of 200 kHz 
 
4 different trigger thresholds, 
each collecting ~20 million 
events 
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PbPb 2.76 TeV, 50-100%

CMS Preliminary

First direct comparison of PbPb and pPb 

Multiplicity distribution  
in pPb and PbPb 

Ø  Highest multiplicity of ~ 370 explored in pPb 
Ø  Occurs once in every 10 million events  
     (~ 6000 events recorded) 
 

Ø  Comparable up to 55% mid-central PbPb 

Overall tracking efficiency:  
~ 83% (Ntrk

offline/Ntrk
corrected) 

same reconstruction in pPb and PbPb 
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2D correlation structures in PbPb vs pPb 

PbPb pPb 

220 ≤ N < 260 

arXiv:1305.0609, submitted to PLB 

~ 60% centrality  

Remarkably similar, who is who’s reference? 
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pT dependence of associated yield 
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Multiplicity dependence of associated yield 
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Long-range yield is strongly correlated with global multiplicity, 
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Very similar trend for pPb and PbPb! 

PbPb : pPb : pp ≈ 8 : 4 : 1 
turn-on at N ~ 40-50? 

Jet yield 
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Hydrodynamics in pp and pA? 

With sufficient initial energy density 
and fluctuating geometry, anisotropic  
flow in pp and pA could be possible 

y 

x 

Of course, Fourier is designed to do this … 



22 

(        ) 

Multi-particle correlations (cumulant) 

Is the Ridge just a two-particle effect, or it involves more particles? 

 ¢  ¢ ¢	  
¢  ¢¢ ¢ ¢	  
 ¢ ¢  ¢ 
¢	  
¢  ¢¢	  

 ¢  ¢ ¢	  
¢  ¢¢ ¢ ¢	  
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2 = cos2(φ1 −φ2 ) 4 = cos2(φ1 +φ2 −φ3 −φ4 )

v2{4} = −c2{4}4

B. Cumulants of the distribution of |Qn|2

For sake of brevity, we now drop the subscript n and set n = 1 until the end of this paper, unless otherwide stated.
All our results can be easily generalized to the study of higher order vn’s by multiplying all azimuthal angles by n.

The moments of the |Q|2 distribution involve the multiparticle azimuthal correlations discussed in Sec. II D. While
〈

|Q|2
〉

involves two-particle azimuthal correlations, as seen in Eq. (19), the higher moments
〈

|Q|2k
〉

involve 2k-particle
correlations. For instance, we have

〈

|Q|4
〉

=
1

M2

∑

j,k,l,m

〈

ei(φj+φk−φl−φm)
〉

. (22)

These higher order azimuthal correlations can be used to eliminate nonflow correlations order by order, as explained
in Sec. II D. This will be achieved by taking the cumulants of the distribution of |Q|2, which we shall soon define.

1. Isotropic source

Following the procedure outlined in Sec. II D, we first consider an isotropic source (no flow). Using Eq. (21),
〈

|Q|2
〉

is then of order unity, and so are the higher order moments
〈

|Q|2k
〉

. However, by analogy with the cumulant
decomposition of multiparticle distributions introduced in Sec. II C, we can construct specific combinations of the
moments, namely the cumulants of the Q distribution, which are much smaller than unity: the cumulant

〈〈

|Q|2k
〉〉

to
order k, built with the

〈

|Q|2j
〉

where j ≤ k, is of magnitude 1/Mk−1.
As an illustration, let us construct the fourth order cumulant

〈〈

|Q|4
〉〉

. If the multiplicity M is large, most of the
terms in Eq. (22) are nondiagonal, i.e. they correspond to values of j, k, l and m all different. Then, using the
cumulant of the four-particle azimuthal correlation defined by Eq. (12) and summing over (j, k, l, m), it is natural to
define

〈〈

|Q|4
〉〉

as

〈〈

|Q|4
〉〉

=
〈

|Q|4
〉

− 2
〈

|Q|2
〉2

. (23)

The order of magnitude of
〈〈

|Q|4
〉〉

is easy to derive: each term of type (12) is of order 1/M3 as discussed in Sec. II D;
there are M4 such terms in the sum (22); taking into account the factor 1/M2 in front of the sum,

〈〈

|Q|4
〉〉

is finally
of order 1/M . As intended, two-particle nonflow correlations, which are of order unity, have been eliminated in the
subtraction (23).

A more careful analysis must take into account diagonal terms for which two (or more) indices among (j, k, l, m)
are equal. This analysis is presented in Appendix A2, where we show that diagonal terms are also of order 1/M :
they give a contribution of the same order of magnitude as direct four-particle correlations. In the following, we
shall assume that this property, namely that the contribution of diagonal terms is at most of the magnitude of the
contribution of nondiagonal terms, also holds for higher order moments.

Among these diagonal terms are the autocorrelations already encountered in the expansion of |Q|2 [see the discussion
below Eq. (20)], which we define as the terms which remain in the absence of flow and direct correlations. A
straightforward calculation (see Appendix A2) shows that their contribution to the cumulant

〈〈

|Q|4
〉〉

is −1/M . As
in the case of the second order moment

〈

|Q|2
〉

discussed previously, autocorrelations are a priori of the same order
of magnitude as other nonflow correlations. As we shall see later in this section, they can easily be calculated and
removed order by order.

22= + + = +

FIG. 3. Decomposition of
〈

|Q|4
〉

= 〈QQQ∗Q∗〉. In the right-hand side, the first term is of order unity while the second term
is of order 1/M .

Arbitrary moments
〈

|Q|2k
〉

can be decomposed into cumulants, which can then be isolated in a similar way. This
decomposition can be represented in terms of diagrams, like the decomposition of the multiparticle distribution in
Sec. II D. This is explained in detail in Appendix B. For example, the decomposition of

〈

|Q|4
〉

is displayed in Fig. 3.
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φ1
φ2

φ3
φ4

4 2 2

v2{2}

average over particles and events 

6.2 Cumulant Method 33

cn{4} = hh4ii � 2 · hh2ii2 (15)

Finally, the reference flow vn can be calculated from the two-particle cumulant (vn{2}) and
from the four-particle cumulant (vn{4}), respectively, as

vn{2} =
q

cn{2} (16)

vn{4} = 4
q
�cn{4} (17)

6.2.2 Differential flow419

Similarly to the procedure for estimating the reference flow, four steps are needed to calculate
the differential flow as a function of pT. In this case, however, the two additional vectors should
be defined, pn and qn, with a similar role as Qn in reference flow,

pn ⌘
mp

Â
i=1

einyi (18)

qn ⌘
mq

Â
i=1

einyi (19)

where mp is the number of particle of interest (POI) and mq is the number of particles labeled420

as both POI and reference flow particles (RFP). The q vector is introduced in order to subtract421

effects of autocorrelations.422

The first step to extract the differential flow is to calculate the reduced (i.e., restricted to a
sub-phase window of interest) single-event average 2- and 4-particle correlations, respectively
given by

h20i =
pnQ⇤

n � mq

mp M � mq
(20)

h40i =[pnQnQ⇤
nQ⇤

n � q2nQ⇤
nQ⇤

n � pnQnQ⇤
2n

� 2 · MpnQ⇤
n � 2 · mq|Qn|2 + 7 · qnQ⇤

n

� Qnq⇤n + q2nQ⇤
2n + 2 · pnQ⇤

n + 2 · mq M
� 6 · mq]/[(mp M � 3mq)(M � 1)(M � 2)].

(21)

The next step is to estimate the event average, i.e.,

hh20ii =
Âevents(wh20i)ih20ii

ÂN
i=1(wh20i)i

(22)

hh40ii =
Âevents(wh40i)ih40ii

ÂN
i=1(wh40i)i

(23)

where the multiplicity weights are given by

wh20i ⌘ mp M � mq (24)

wh40i ⌘ (mp M � 3mq)(M � 1)(M � 2) (25)

4th-order 
cumulant: 2 
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Multiplicity dependence of elliptic flow (v2) 
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Peripheral subtraction makes no difference at high multiplicity! 
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Multiplicity dependence of elliptic flow (v2) 
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v2{4} turns on at N ~ 40: onset of collective phenomena?  

Peripheral subtraction makes no difference at high multiplicity! 
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Multiplicity dependence of elliptic flow (v2) 
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Figure 36: The differential v2{2} and v3{2} values (open markers) as a function of pT obtained
for |h| < 2.4 from long-range two-particle correlations with |Dh| > 2 for 1 < passoc

T < 2 GeV/c
is shown, together with the differential v2{4} values (solid markers) as a function of pT for
|h| < 2.4 obtained with three reference particles in the pT range of 0.3-3 GeV/c. The results refer
to 2.76 TeV PbPb collisions (left) and to 5.02 TeV pPb collisions (right).

(v2{2, |Dh| > 2}) for 1 < passoc
T < 2 GeV/c, are shown in Fig. 36 in open markers. At a given pT509

value, v2 is observed to be 3–4 times bigger than v3. While the requirement of |Dh| > 2 com-510

pletely removes the near-side jet-like correlations, additional non-hydrodynamical correlations511

from back-to-back jets, as well as effects of energy-momentum conservation on the away side512

of two-particle correlation function could still contaminate the v2 and v3 values obtained from513

two-particle correlations.514

In order to further restrict the residual non-flow effect on the away side, the technique of four-515

particle cumulant is used to extract the v2 value (v2{4}). See section. 6.2 for more details about516

this method. Note that no Dh gap is applied here (as well as in the two-particle correlation517

method) since, upon correlating four particles at the same time the non-flow correlations are518

naturally suppressed, especially for high multiplicity events (in fact, it is suppressed by an519

additional factor of 1/N as compared to two-particle correlation method). The measured v2{4}520

values as a function of pT are also shown in Fig. 36 in solid markers. As one can see, v2{4} is521

below v2{2} over the whole pT range, with similar behavior in pPb and PbPb collisions. This is522

expected because the event-by-event v2 fluctuation contribute to v2{4} and v2{2} in opposite523

ways, approximately following the relations:524

v2{2} =
q
< v2 >2 +s2

v2
, v2{4} =

q
< v2 >2 �s2

v2
, (30)

which always results in a larger value for v2{2} than v2{4}.525

Fig. 37 shows the multiplicity dependence of v2{2}, v2{4} and v3{2} for 1 < pT < 2 GeV/c526

in PbPb and pPb collisions. For Noffline
trk & 40, v2{2} and v3{2} show moderate increase with527

Noffline
trk in PbPb collisions, while they are approximately constant in pPb collisions. On the other528

hand, the v2{4} results show a very intriguing behavior, rapidly turning on at Noffline
trk ⇠ 40� 60529

in both pPb and PbPb , and then remaining approximately constant in Noffline
trk up to the highest530

multiplicity ranges explored in this analysis. Furthermore, the amount of event-by-event v2531
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|h| < 2.4 obtained with three reference particles in the pT range of 0.3-3 GeV/c. The results refer
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40 7 Results

fluctuations could be estimated from Eq. 30, if one assumes that hydrodynamic flow would be532

the only source of correlations in v2{2} and v2{4}. Considering that this could be the case, then533

sv2

v2
=

s
v2

2{2}� v2
2{4}

v2
2{2}+ v2

2{4}
. (31)

The results for pPb and PbPb collisions are shown in the bottom panel of Fig. 37, indicating534

about 45–55% v2 fluctuations in PbPb collisions, as compared to ⇠ 60% in pPb collisions. Con-535

sidering the expected non-flow effects in v2{2}, these data serve as an estimate of an upper536

limit on v2 fluctuations in pPb and PbPb collisions.537

Extract “v2 fluctuations” 
Larger in pPb with moderate  
multiplicity dependence 



28 

Multiplicity dependence of elliptic flow (v2) 

Pb	
Pb	  Pb	
Pb	  

v2 in PbPb increases as eccentricity decreases? 
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Pb	
Pb	  Pb	
Pb	  Pb	
Pb	  

PbPb 2.76 TeV 
EPJC 72 (2012) 2012 

Multiplicity dependence of elliptic flow (v2) 

Pb	
Pb	  Pb	
Pb	  

PbPb 2.76 TeV, 50-100% 
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Pb	
Pb	  Pb	
Pb	  Pb	
Pb	  

PbPb 2.76 TeV 

Multiplicity dependence of elliptic flow (v2) 

Pb	
Pb	  Pb	
Pb	  

Smaller system size (L ~ λ) 
è larger viscous correction 

Nearly ideal hydro,  
geometry driven 

PbPb 2.76 TeV, 50-100% EPJC 72 (2012) 2012 

Crucial to understand the full centrality range! 
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Triangular flow (v3) 

v3 is special as “nonflow” dijets on the away side can only 
give rise to negative V3Δ component 
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Positive long-range V3Δ must indicate “new physics” 

Triangular flow (v3) 

V3Δ > 0!	  

v3 is special as “nonflow” dijets on the away side can only 
give rise to negative V3Δ component 
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pT dependence of triangular flow (v3) 
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Multiplicity dependence of triangular flow (v3) 

Striking similarity of v3 for PbPb and pPb systems with 
drastically different collision geometry and its fluctuations 

Can this be understood in hydrodynamics? 

(uncertainties are much larger for smaller systems) 
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Multiplicity dependence of triangular flow (v3) 

Striking similarity of v3 for PbPb and pPb systems with 
drastically different collision geometry and its fluctuations 

Can this be understood in hydrodynamics? 

(uncertainties are much larger for smaller systems) 
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²  viscous correction 
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è v3{PbPb}>v3{pPb} ? 
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Any other evidence of hydro flow? 
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Any other evidence of hydro flow? 
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Any other evidence of hydro flow? 

Ø Similar trend as observed in AA collisions 
Ø Onset of radial flow effect: Tslope ≈ Tfreeze-out+m<u>2? 

radial flow velocity 
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Outlook and Summary 

Pb Pb p Pb p p 

Common origin or coincidence? We are closing in to the answer 

New dimension of probing high-density QCD medium  
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Outlook and Summary 

A comprehensive investigation of AA observables in pA will 
provide us the definitive answer in the next few years: 
Ø  HBT radii, as big as in AA? 
Ø  Identified particles spectra and correlations, hadron chemistry 
Ø  Jet-medium interaction (where does v2 pT ~ 6 GeV/c come from?) 
Ø  Quarkonia melting 

None of these could be imagined a couple of years ago 

Pb Pb p Pb p p 

Common origin or coincidence? We are closing in to the answer 

New dimension of probing high-density QCD medium  



41 

Outlook and Summary 

Future pA program at the LHC beyond 2015:  
Ø  Higher energy 
Ø  Higher luminosity Higher multiplicity reach! 
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Outlook and Summary 

Future pA program at the LHC beyond 2015:  
Ø  Higher energy 
Ø  Higher luminosity 
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v3 ? 
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Longer lifetime,  
smaller viscous correction 
finally more sensitive to εn? 

Higher multiplicity reach! 
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Outlook and Summary 

Future pA program at the LHC beyond 2015:  
Ø  Higher energy 
Ø  Higher luminosity 
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Outlook and Summary 

Future pA program at the LHC beyond 2015:  
Ø  Higher energy 
Ø  Higher luminosity 
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Higher multiplicity reach! 

QGP liquid also in pp and pA?! 

If many features of high multiplicity pp 
and pA appear to be consistent with AA,  
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Stay tuned! 

“pA is like a litmus test. Until we understand pA from our 
understanding of pp and AA, we cannot claim to have a 
deep understanding of pp and AA.” 

－ Wit Busza 
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Backups 
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Peripheral subtraction 
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Reason to be understood as AMPT can describe the ridge in AA: 
•  Transport model not applicable for small system?  
•  Process turned off? 
•  Not enough high multiplicity? 

No ridge in high multiplicity AMPT pPb 
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Hydrodynamics in small systems 

Large uncertainty of initial condition Larger corrections due to smaller 
system size/shorter lifetime 

εn is not the only predictor of vn 

If we are confident with hydro + viscosity for central AA, we must 
test it in the regime where viscous correction is more significant 
 

If IP-glasma model is the right description of initial condition, pp/pA 
provides an ideal testing ground of it 

A. Bzdak. et al., arXiv: 1304.3403 
only 20% difference for AA 
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The Ridge in dA at RHIC 

Eccentricity scaling!? 
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CMS does not seem to see the scaling 
between pPb and peripheral PbPb … 

εn from MC Glauber	  

Given the large uncertainty, we should be careful when dividing by εn!  
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Peripheral subtraction 
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Two-particle correlations at CMS 

Δη = ηassoc – ηtrig
 

Δφ = φassoc – φtrig
 

Pair of two primary reconstructed tracks within |η|<2.4 
•  Trigger particle from a pT

trig interval 

•  Associated particle from a pT
assoc interval 

Event 1: Event 2: 

S(Δη,Δϕ ) = 1
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d2Nsame

dΔηdΔϕ
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B(Δη,Δϕ) =
1
Ntrig

d 2Nmix

dΔηdΔϕ

Signal-pair distribution Background-pair distribution 

Triangular shape in Δη 
due to limited acceptance 

η=-2.4 η=2.4 η=0.0 

z 

Same-event pairs Mixed-event pairs 
(similar zvtx) 
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Two-particle correlations at CMS 
Pair of two primary reconstructed tracks within |η|<2.4 
•  Trigger particle from a pT

trig interval 

•  Associated particle from a pT
assoc interval 
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Signal-pair distribution Background-pair distribution 

Triangular shape in Δη 
due to limited acceptance 
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B(Δη,Δφ)

Pair yield per trigger particle: 
Δη = ηassoc – ηtrig

 
Δφ = φassoc – φtrig

 


