Acceptance, Resolution and Alignment for ATLAS RP220

Cracow Meeting: October 18-19, 2007

Alexander Kupčo

Institute of Physics, Prague

- acceptance in ξ and M_{X}
- resolution in M_{X}
- elastics and RP calibration

LHC beam-pipe at 220m

- consider space between Q5 (200m) and Q6 (226m)
- try to optimize the performance in terms of acceptance at low values of ξ and in terms of missing mass resolution
- Proposal: two stations at 216 and 224 meters

Acceptance in ξ

- MadX tracking with LHC6.5 low- β optics
- diffractive protons deflected mostly in the horizontal direction away from the ring center (the best possible configuration)
- similar, for the second beam
- aperture of LHC optics stops protons with $\xi>0.15 \Rightarrow$ determines the detector size to be about $2 \times 2 \mathrm{~cm}$

Acceptance at low values of ξ

- best acceptance is around Q6 magnet
- spectrometer acceptance is determined by the RP that is closer to the IP
- larger distance between stations means better resolution

- $2 \times 2 \mathrm{~cm}$ detector
- $200+50 \mu \mathrm{~m}$ dead edge
10σ
- beam 1: $0.010<\xi<0.15$
- beam 2: $0.012<\xi<0.14$ 15σ
- beam 1: $0.014<\xi<0.15$
- beam 2: $0.016<\xi<0.14$
20σ
- beam 1: $0.018<\xi<0.15$
- beam 2: $0.021<\xi<0.14$

Acceptance in M_{X}

Missing mass resolution

- reconstruction code:
- precomputed table in ξ, p_{T}, and ϕ for hits in the two RP stations
- linear interpolation
- tracks reconstructed using brute force by minimizing χ^{2}
- full detector simulation being developed by Krakow group
- for $\sigma_{i}=10 \mu \mathrm{~m}$, the expected detector resolution is about 0.6%
- realistically, due to uncertainties in the detector alignment, final precision of about $15-20 \mu \mathrm{~m}$ can be achieved
- 8 meters distance between RP stations gives acceptable resolution of about 1\%

Beam influence on M_{X} resolution

- beam energy ($\sigma_{E}=0.77 \mathrm{GeV}$) and angular spread $\left(\vartheta_{x, y}=30.2 \mu \mathrm{rad}\right)$ have negligible effect on M_{X} resolution
- this is not true for the beam transversal size ($\sigma_{\text {beam }}=16.6 \mu \mathrm{~m}$)
- interaction region is smaller

$$
\sigma_{\text {int }}=\sigma_{\text {beam }} / \sqrt{2}=11.7 \mu \mathrm{~m}
$$

but it still leads to large resolution degradation

- we would clearly benefit if the ATLAS central tracker can constrain vertex transversal position with accuracy better than 10 microns
- protons reconstructed independently, resolution may improve if one uses the information that both are coming from the same vertex

Using elastics for alignment/calibration

- Can we use some events to align/calibrate our detectors?
- $p p \rightarrow p \mu \mu p$ cross section drops with $M_{\mu \mu}$, good for RP420 but probably not for RP220

- operating at $10 \sigma+0.25 \mathrm{~mm}$:
- $\sim 2 \pm 0.4$ elastic events per day expected in horizontal RP
- $\sim 10^{4}$ elastic events per day expected in vertical pots
- operating at $15 \sigma+0.25 \mathrm{~mm}$
- $p_{T}>3 \mathrm{GeV}$ for vertical pots $\Rightarrow \sim 100$ events per day
- operating at $20 \sigma+0.25 \mathrm{~mm}\left(p_{T}>\right.$ 4 GeV) would mean seeing 0.2 events per day

Overlap for soft SD events

- soft SD cross section is 14 mb $\rightarrow 10^{12}$ events per store
- out of them, $\sim 0.02 \%$ (0.005% for 15σ) are in the overlapping region with vertical RP
- should be more than enough to perform relative vertical-to-horizontal cross alignment
- we still need to evaluate how much we would benefit from elastic events in terms of improving the calibration of missing mass M_{X}

Summary

- Configuration of proton spectrometers with roman pots at 216 and 224 meters gives reasonable balance in missing mass acceptance and resolution
- Proposed RP detectors will significantly improve the accessible range in missing mass with respect to RP420 only
- Required spatial resolution of the detectors is about $\sim 10 \mu \mathrm{~m}$, and similar precision must be reached for the detectors alignment with respect to the beam position
- Under this conditions, the dominant contribution to the missing mass resolution is the smeared vertex transversal position
- Detection of elastic events is possible if vertical roman pots are built in addition to the horizontal ones. However, we need to understand how much we can benefit from them.

