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Diffractive processes
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s | $ vacuum quantum number exchange
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R < y ® QCD: two gluons in color singlet state
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DIS: s > Q* > Ajcp, —t, m?
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| ® semihard processes: z = Q?/s < 1
| . .
P < y ® perturbative QCD applicable
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Soft and hard diffraction

Two basic features of diffraction:

® rising cross sections with energy s
® large rapidity gaps: n = —logtan(#/2) (color singlet exchange)

Y>/\< X

® Soft diffraction (no hard scale): ¢ ~ s*?(9  ap(t) =1.08+0.25-

pp — p+Dp vp — V(p,w,¢) +p

® Hard diffraction (with hard scale): 1.1 < ap(0) < 1.4

pp—Jjj+pp Yp—=X+p Fp—=V+p p—=J/Y+Dp
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Deep inelastic scattering
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#® Infinite momentum frame (P — oc):

pointlike v* resolves partonic constituents of the proton

® Proton rest frame (P ~ 0):

~* develops partonic fluctuations long before the proton target

e W@

Coherence length: .= -1 > -1 ~0.2 fm

mypX
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Dipole states

Hadron wave function in light-cone quantization approach

W) =D U, |n) 7Y = |21...2n; k11 ... k7))
In) are partonic states — eigenstates of free Hamiltonian

Eigenstates of diffraction are Fourier transformed partonic states
with transverse positions

— —

|21...Zn; le...an> — ‘len, ’I"l...?“n>

Virtual photon wave function

7)) = Z Wyq lqq) + Z Vg 1979) + - -
qq dipole of size 7 = 7, — 7 at impact parameter b = (7, + 75)/2.
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qq dipole

® the lowest component

QZ
AVAVAVAVAVAV QI
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#® light-cone photon wave function: \Ifﬁjh,(r, z,Q?), known from QED
® dipole states are eigenstates of scattering operator

® 7 and z are conserved in the high energy scattering
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Color dipole models

Universal description in the leading order in log(s) (N. N. Nikolaev, B. G. Zakharov)

® Scattering amplitude (A=~%7,V)
A" +p— A+p) = /d2rdz U Nyg U,

® N, (r,b Y =1In(l/x)) Is the dipole scattering amplitude

® Find N, from
otot ~ IMmA(Y* +p — 7" +p)

and test in DDIS processes.
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Phenomenological parameterizations
GB-Wisthoff parameterization with saturation scale Q,(z) = Qoz~*
Noq(r,b, ) = 0(b < bo) (1— e 7" %(®)

iIdea of parton saturation

. - @
x=10 ~2 x=10 8

unitarity fulfilled: N,;(0) <1

geometric scaling: N,z(rQs(z),b)

Saturation model in diffraction — p.8/19



DIS diffraction and saturation

® Parameters by, A\, Qo from oo ~ F5

® Successful description of DDIS with two component diffractive state

[1RRXXR12XAA]

® The only approach which explains constant ratio with energy

Odiff N 1
Otot log(Q*/Q%(z))

DDIS sensitive to semihard dipoles: r ~ 1/Q
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Important improvements

Small dipole corrections — to match perturbative QCD results

(Frankfurt, Strikman, McDermott, Bartels, GB, Kowalski, lancu, Itakura, Munier)
2 2
Nyg(ryb,x) ~ r*as G(x,1/r°)T(b)

Realistic b-profile — t-dependence of exclusive diffractive processes
(Kowalski, Teaney, Motyka, Watt)

T(b) = exp(—b*/2B) Qs(x,b) = Qo™ T(b)

Theoretical justification?
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Dipole evolution
Soft gluon emissions with z, < z,

- <
/\/\/\/\/@ Z MV\A’%%
large Nc y

y

Splitting probablity (xy) — (xz) + (zy)

d_P . Ncas (f_ 5)2
dY — 272 (%— 2)2(Z—9)?
Classical branching process (. H. Mueller)

dZ (z,y;u)
dY

— /dQ,zK(x,y, ) {Z(x,z;u) Z(z,y;u) — Z(x,y;u)}

Multi-dipole distributions:  nj, = 6*Z/6u*| __ k=12, ...
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Balitsky-Kovchegov evolution equation

® BFKL growth of dipole density: n; ~ e4"29Y  Unitarity violated?
® No, if simultaneous, uncorrelated scattering of several dipoles

Ngg = (=) + (—7)2 ng + (—’y)3 ny + ...

#® Nonlinear equation justified in case of y* A scattering (S =1 — N,3)

0S5 (z,y)
oY

_ /dQZK(gj7y, 2){S(z,2) S(z,y) — S(x,y)}

® |ocal unitarity: S(b) < 1.
® Global unitarity: Froissart bound violated.
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Parton saturation

® No saturation in dipole number density in BK equation.

® Missing dipole merging: 2 — 1 (Pomeron loops)

C
® Necessary for symmetric description in pp scattering.

Summary of studies:

® Lot of efforts in Color Glass Condensate approach.

® Negative transition probabilities prevent probabilistic formulation in
terms of color dipoles only.

°

Formation of color quadrupols and higher multipoles.

°

More intuitive approach ?
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Dipole swing

(E. Avsar, G. Gustafson, L. Lonnblad)

® Scattering of two dipoles with the same color — change of color flow

Y1 9 * % y; &—>—e X)
Y A
X1 J L Y> X; o—<—e Y,

® Weight prefers the formation of smaller dipoles.

2(962 — yz)2

(952 — y1)2

(901 — yl)
(5171 — yz)

2

® Smaller dipoles have smaller cross sections.

® Suppression of the total cross section due to dipole swing.
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Dipole chain scattering

® Dipole chain splittings and mergings

® Monte Carlo implementation.
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Diffraction in pp scattering

Good-Walker picture with dipole states as eigenstates of diffraction

r) = |L,R) = > eye |nym)

The scattered state

sy =Im T [¢r) = Y kel tm [n,m)

Diffractive cross section (measure of fluctuations)

dUdef
d?b

= (Ys|vs) ZPLPﬂ]ftim

Eikonal form of the scattering ampliudes

tom = 1 — e_an Fom = Z Fz’j
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Predictions for the LHC

(E. Avsar, G. Gustafson, L. Lonnblad, 0709.1368 [hep-ph])
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Conclusions

Saturation models are very successful in describing diffractive data
INn ep scattering.

Dipole approach with saturation can be applied to diffractive pp
scattering.

Let's listen and discuss.
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