Exclusive photoproduction of J/Ψ in pp and $p\bar{p}$ collisions

Wolfgang Schäfer ¹

¹Institute of Nuclear Physics, PAN, Kraków

Workshop on Hard Diffraction at LHC, 18 - 19 October 2007, Kraków, Poland

Outline

Exclusive production of heavy vector mesons

Results for J/Ψ

A Glimpse at Υ

Summary

W.S. & Antoni Szczurek

Exclusive Photoproduction of J/Ψ in proton–proton and proton–antiproton scattering.

Phys. Rev. D, to appear, 2007.

Exclusive Production of J/Ψ in Hadronic Collisions Born Level Amplitudes

Photoproduction

Khoze-Martin-Ryskin '02; Klein & Nystrand '04

cross section ~ nanobarns

Exclusive Production of J/Ψ in Hadronic Collisions

Born Level Amplitudes

Photoproduction

Odderon-Pomeron fusion

Khoze-Martin-Ryskin '02; Klein & Nystrand '04

cross section ∼ nanobarns

A. Schäfer, Mankiewicz & Nachtmann '91; Bzdak et al. '07 cross section $\sim 0.1 \div$ few nanobarns (??)

Exclusive Production of J/Ψ in Hadronic Collisions

Born Level Amplitudes

Photoproduction

Khoze-Martin-Ryskin '02; Klein & Nystrand '04 cross section ~ nanobarns

Odderon-Pomeron fusion

A. Schäfer, Mankiewicz & Nachtmann '91: Bzdak et al. '07 cross section ~ 0.1 ÷few nanobarns (??)

Radiative Decay of χ_c

e.g. Szczurek, Pasechnik & Tervaev '07 find < 1 nb.

Born Level Amplitude

Born Level Amplitude

• $p \rightarrow \gamma p$ transition given in terms of e.m. formfactors.

Born Level Amplitude

- $p \rightarrow \gamma p$ transition given in terms of e.m. formfactors.
- $\gamma p \to J/\Psi p$ amplitude adjusted to HERA data. $\mathcal{M} = (i + \rho) s \sqrt{16\pi d\sigma/dt}|_{t=0} (s/s_0)^{\alpha(t)-1} \exp(B_0 t/2).$

Born Level Amplitude

$$\begin{split} \boldsymbol{M}(\boldsymbol{p}_{1},\boldsymbol{p}_{2}) &= e_{1} \frac{2}{z_{1}} \frac{\boldsymbol{p}_{1}}{t_{1}} \mathcal{F}_{\lambda'_{1}\lambda_{1}}(\boldsymbol{p}_{1},t_{1}) \mathcal{M}_{\gamma^{*}h_{2}\rightarrow Vh_{2}}(s_{2},t_{2},Q_{1}^{2}) \\ &+ e_{2} \frac{2}{z_{2}} \frac{\boldsymbol{p}_{2}}{t_{2}} \mathcal{F}_{\lambda'_{2}\lambda_{2}}(\boldsymbol{p}_{2},t_{2}) \mathcal{M}_{\gamma^{*}h_{1}\rightarrow Vh_{1}}(s_{1},t_{1},Q_{2}^{2}). \end{split}$$

- $p_1, p_2 = \text{transverse momenta of outgoing (anti-) protons.}$
- Interference induces azimuthal correlation $e_1e_2(\boldsymbol{p}_1 \cdot \boldsymbol{p}_2)$.

• Born: $\Gamma^{(0)}({m r},{m b}_V)={1\over 2}\,\sigma({m r})\,t_N({m b}_V)$

• Born: $\Gamma^{(0)}({m r},{m b}_V)={1\over 2}\,\sigma({m r})\,t_N({m b}_V)$

- Born: $\Gamma^{(0)}({\pmb r},{\pmb b}_V) = \frac{1}{2} \, \sigma({\pmb r}) \, t_N({\pmb b}_V)$
- Absorbed:

$$\Gamma(\mathbf{r}, \mathbf{b}_{V}, \mathbf{b}) = \Gamma^{(0)}(\mathbf{r}, \mathbf{b}_{V}) - \frac{1}{4}\sigma(\mathbf{r})\sigma_{qqq}(\{\mathbf{b}_{i}\})t_{N}(\mathbf{b}_{V})t_{N}(\mathbf{b})$$

$$= \Gamma^{(0)}(\mathbf{r}, \mathbf{b}_{V})\left(1 - \frac{1}{2}\sigma_{qqq}(\{\mathbf{b}_{i}\})t_{N}(\mathbf{b})\right)$$

$$\rightarrow \Gamma^{(0)}(\mathbf{r}, \mathbf{b}_{V}) \cdot S_{el}(\mathbf{b})$$

with

$$\mathbf{M}(\mathbf{p}_{1}, \mathbf{p}_{2}) = \int \frac{d^{2}\mathbf{k}}{(2\pi)^{2}} S_{el}(\mathbf{k}) \mathbf{M}^{(0)}(\mathbf{p}_{1} - \mathbf{k}, \mathbf{p}_{2} + \mathbf{k})
= \mathbf{M}^{(0)}(\mathbf{p}_{1}, \mathbf{p}_{2}) - \delta \mathbf{M}(\mathbf{p}_{1}, \mathbf{p}_{2}),
S_{el}(\mathbf{k}) = (2\pi)^{2} \delta^{(2)}(\mathbf{k}) - \frac{1}{2} T(\mathbf{k}), \quad T(\mathbf{k}) = \sigma_{\text{tot}}^{pp}(s) \exp\left(-\frac{1}{2} B_{el} \mathbf{k}^{2}\right),$$

$$\delta \mathbf{M}(\mathbf{p}_1, \mathbf{p}_2) = \int \frac{d^2 \mathbf{k}}{2(2\pi)^2} \, T(\mathbf{k}) \, \mathbf{M}^{(0)}(\mathbf{p}_1 - \mathbf{k}, \mathbf{p}_2 + \mathbf{k})$$

- A poor man's recipe to account for other than elastic rescatterings:
- ullet multiply rescattering amplitude by $\lambda \sim (\sigma_{\it el} + \sigma_{\it D})/\sigma_{\it el}$
- $\sigma_D = 2\sigma(pp \to pX) + \sigma(pp \to XY)$.

Rapidity Distribution

Rapidity Distribution

• sizeable cross sections, energy reach beyond the HERA regime

Rapidity Distribution

- ullet No Absorption included o Interference cancels out.
- Separation of the two mechanisms: P propagates the larger distance in rapidity.

Transverse Momentum Distribution of J/Ψ 's

• Solid lines $\leftrightarrow pp$ collisions. Dashed lines $\leftrightarrow p\bar{p}$ collisions.

Transverse Momentum Distribution of J/Ψ 's

- Solid lines $\leftrightarrow pp$ collisions. Dashed lines $\leftrightarrow p\bar{p}$ collisions.
- J/Ψ 's are produced with very small \boldsymbol{p}_{\perp} .

Transverse Momentum Distribution of J/Ψ 's

- Solid lines $\leftrightarrow pp$ collisions. Dashed lines $\leftrightarrow p\bar{p}$ collisions.
- J/Ψ 's are produced with very small \boldsymbol{p}_{\perp} .
- Interference of γP and $P\gamma \rightarrow$ different shapes in pp and $p\bar{p}$.

Azimuthal Angle Between Outgoing (Anti-)Protons

- Interference of γP and $P\gamma$ induces dependence on azimuth.
- It works in a broad range of rapidities.

Azimuthal Angle Between Outgoing (Anti-)Protons

Dashed Lines → Born Level. Solid Lines: Absorption included.

Azimuthal Angle Between Outgoing (Anti-)Protons

- Dashed Lines → Born Level. Solid Lines: Absorption included.
- Absorption induces a rich structure of "diffractive dips".

Fully Differential Cross Section

• y = 0; $p_2^2 = 1$ GeV². Absorptive corrections included.

Varying the Strength of Absorption

- y = 0; $p_2^2 = 1$ GeV². Dotted: Born level.
- solid:elastic rescattering; dashed/dash-dotted: enhanced rescattering.

p_{\perp} -dependence of Absorption $< S^2(\boldsymbol{p}_{\nu}) >$, y=0

- Solid: elastic rescattering, Dashed: enhanced rescattering $\lambda=1.5$.
- Absorptive Suppression is a strong function of $p_{J/\Psi}$.
- Absorption leads to a small $2 \div 3\%$ charge asymmetry in rapidity distributions.

A Glimpse at Υ

- Calculation following Ivanov-Nikolaev k_{\perp} factorisation formalism. Data:ZEUS.
- Uncertainty due to wave–function of Υ: solid=harmonic oscillator; dashed=Coulomb–like
- effective $\Delta_{I\!\!P} \sim 0.4$

Rapidity Distributions of Υ 's

No Absorptive corrections included.

Rapidity Distributions of Υ 's

- No Absorptive corrections included.
- Large effective Pomeron intercept → peak in rapidity distribution.

Transverse Momentum of Υ 's

- No Absorptive corrections included.
- Blue=pp; Red = $p\bar{p}$
- Interference rules behaviour at low momenta.

Summary

- Cross sections for exclusive photoproduction of Quarkonia at colliders are of measurable size.
- Reach in energy far beyond HERA-domain possible.
- Absorptive corrections: rich structure in distributions.

- Outlook
 - Extend to radial excitations $\psi(2S)$, $\Upsilon(2S, 3S)$.
 - Absorptive corrections at LHC energies remain a challenge.
 - Include other 'backgrounds', feeddown from *p*-waves, Odderon.