DPE $H \rightarrow b\bar{b}$ studies

Vojtěch Juránek

Institute of Physics, Prague

19. 10. 2007, Diffraction at LHC, Kraków

Vojtěch Juránek (FZU Prague)

DPE $H \rightarrow b\bar{b}$ studies

19. 10. 2007, Diffraction at LHC, Kraków 1 / 21

2 Background

- Four studies about $H \rightarrow b\bar{b}$ so far:
 - A. Pilkington (Manchester): estimates based on counting probabilities + MC simulations on generator level,
 - M. Taševský (Prague): MC simulations on detector level (fast CMS simulation),
 - A. Pal (UTA): MC simulations on detector level (fast Altas simulation),
 - V. Juránek (Prague): MC simulations on detector level (fast Atlas simulation).
- Review talk of this studies (except Arnab's final results, not available yet).

Double pomeron exchange

- pp→p+gap+X+gap+p (at higher luminosities there will be no rapidity gaps because of pile-up).
- Both protons remain intact, momentum loss of protons during interaction used to create central object/system.
- Proton energy lost can be measured:

$$\xi = \mathbf{1} - \frac{p_z'}{p_z}.$$

 If both protons are detected in RP, we have a constraint on central object mass and rapidity:

$$M_X \simeq \sqrt{\xi_1 \xi_2 s}$$

$$y_X \simeq \frac{1}{2} \ln \frac{\xi_1}{\xi_2}.$$

$$p$$

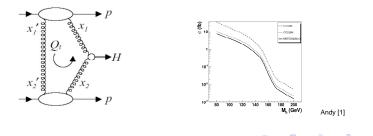
$$p$$

$$p$$

$$p_2$$

$H ightarrow bar{b}$

- $H \rightarrow b\bar{b}$ channel is very interesting for Higgs mass around 120GeV.
- H decay mostly (68%) into $b\bar{b}$ for $M_H = 120 GeV$.
- "Standard" $H \rightarrow b\bar{b}$ is not possible to detect due to very huge $b\bar{b}$ background.
- For $M_H = 120 \text{GeV}$ the possible "standard" channels like as $\tau^+ \tau^-$ or $\gamma \gamma$ are the difficult ones others channels (like this diffractive one) are welcomed.


Exclusive DPE Higgs boson production

Advantages:

- Precise measurement of Higgs mass.
- Good signal background ratio $(\frac{H \rightarrow b\bar{b}}{gg \rightarrow b\bar{b}}$ better in diffractive processes than in non-diffractive).

Disadvantages:

- Small cross section (units of fb).
- Sensitive on pile-up (more hits in RP) from other soft diffractive events.

Exclusive and Inclusive DPE Background

Exclusive:

• $gg \rightarrow b\bar{b}$

- The same behavior as signal.
- The most important background at low luminosities.
- Suppressed by factor $\frac{m_b^2}{M_u^2}$.
- gg → gg
 - Due to mis-tagging gluon jets as *b*-jets.
 - Expected mis-tag of gluon jet as *b*-jet is (at Atlas) of 1.3% for a 60% *b*-jet efficiency.

Inclusive:

- $pp \rightarrow p + A + X + p$
 - X is $b\bar{b}$ dijet, A pomeron remnants.
 - Almost completely suppressed by cuts on exclusivity.
 - Strongly depends on PDF which is not very well known (especially for high β).

- Two MC generators were used: Dpemc and Exhume.
- In Dpemc, Bialas-Landshoff model was used.
- For KMR model used Exhume implementation.

 $H
ightarrow b ar{b}$

- There are uncertainties in this cross section 1-10fb.
- Dpemc σ = 2.0 fb.
- Exhume σ = 1.9 *fb*.

Exclusive DPE $gg, p_T^{min} = 30 GeV$

• Exhume $\sigma = 1.22 \cdot 10^6 fb$.

Exclusive DPE $b\bar{b}$, $p_T^{min} = 30 GeV$

- Dpemc σ = 520 *fb*.
- Exhume σ = 269 *fb*.

Inclusive DPE $q\bar{q}$.

• Dpemc $\sigma = 5.5 \cdot 10^4 pb$.

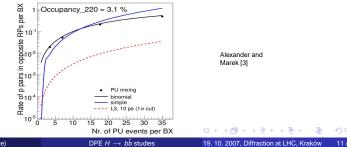
- Overlap of three events: normal QCD di-jet production and two single diffraction events (which cause hit in both sides of RP).
- In general three types:
 - [*p*][*X*][*p*]: hard event + two soft diffractions,
 - [*pX*][*p*]: one hard diffraction + one soft diffraction,
 - [*pp*][X]: double diffraction + hard event.
- At high luminosities the most dangerous background is [p][X][p]:
 - [p][X][p] grows quadratically with luminosity,
 - [pp][X] grows linearly with luminosity,
 - [pX][p] is suppressed by gap survival probability (with comparison to [p][X][p]).

Cross section for pile-up (used by A. Pilkington)

$$\sigma_{\textit{pile}-up} = (N-1)(N-2)P_1P_2Q\sigma, \tag{1}$$

where

- N is average number of interactions in bunch crossing,
- *P*₁ resp. *P*₂ probabilities of production single diffractive event which cause hit in left resp. right RP,
- Q rejection factor from matching di-jet vertex with proton vertex,
- σ di-jet cross section.
- *P*₁ and *P*₂ calculated from the single diffractive cross section (KMR: hep-ph/0609312) or simulated by MC.
- *P_i* = 0.85% for FP420 and 3% for RP220.


Timing Detector

• Number of hits of pile-up in RP in bunch crossing can be expressed as: $N^{RP}(simple) = N^{PU} \cdot (N^{PU} - 1) \cdot Acc^{2}$ (2)

or more precisely (A. Kupčo):

$$N^{RP}(binomial) = 2e^{-\mu}(\cosh\mu - 1) + 1 + e^{-\mu_{LR}},$$
 (3)

where

Vojtěch Juránek (FZU Prague)

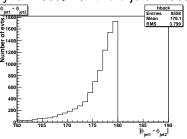
Timing Detector

- Hits in both sides of roman pots.
- Z coordinate of vertex position can be computed as

$$\mathsf{z}_{pp} = c \frac{t_L - t_R}{2},\tag{4}$$

where t_L resp. t_R is time of flight to left resp. right RP.

- By matching of this z_{pp} position with z_{hard} position of hard vertex pile-up background can be significantly suppressed.
- The event is rejected if z_{pp} is outside z_{hard} ± 2σ, where σ is resolution in z direction of timing detector.
- Suppression factor depends on time resolution of the detector but not so much on luminosity:

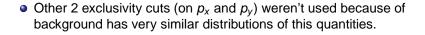


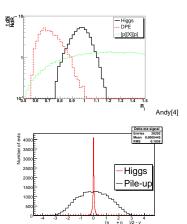
• Detector acceptance cuts:

- Two jets, $p_T^{bjet1} > 45 GeV$, $p_T^{bjet2} > 30 GeV$.
- Jets must be central ($|\eta| < 2.5$).

• Both jets are b-jets (b-tagging efficiency is $\sim 60\% =>$ two b-jets $\sim 36\%$).

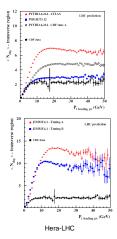
 Jets are back-to-back (170 < φ_{bjet1,bjet2} < 180).


Exclusivity Cuts


R_j and R_{jj} cuts:

- $M_X \simeq \sqrt{\xi_1 \xi_2 s}$ mass of central object.
- $R_{jj} = \frac{M_{dijet}}{M_X}$
- $R_j = \frac{2E_T^{jet1}}{M_X} \cosh(\eta^{jet1} y_X), y_X \simeq \frac{1}{2} \ln \frac{\xi_1}{\xi_2}$
- 0.8 < *R_{jj}* < 1.2
- 0.8 < *R_j* < 1.1

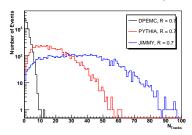
$\Delta\eta$ cut:


- Cut on $\Delta\eta = (\eta_{bjet1} + \eta_{bjet2})/2 y_X \approx 0$
- y_X is rapidity of central object, $y_X \simeq \frac{1}{2} \ln \frac{\xi_1}{\xi_2}$
- Cut $|\Delta \eta| < 0.1$

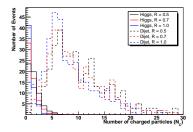
N_C and N_C^{\perp} Cuts

- Cut on number of charged particles (tracks) coming from primary vertex.
- N_C is number or charged particles outside dijet (outside cone with some radius around dijet axis).
- N[⊥]_C is number of charged particles outside of dijet but transverse to the leading jet.
- By transverse is meant that $\frac{\pi}{3} < |\phi_{track} \phi_{jet1}| < \frac{2\pi}{3}$ or $\frac{4\pi}{3} < |\phi_{track} \phi_{jet1}| < \frac{5\pi}{3}$.
- Considered only tracks from primary vertex.
- Rejection factor is almost independent of number of interaction in bunch crossing (M. Taševský, V.J.)
- Very important to tune MC completely different results for various Monte Carlos.
- Full simulation is needed.

N_C and N_C^{\perp} , no pile-up


Cuts:

- $N_C < 4 \wedge N_{C\perp} < 3$
- $p_T^{Track} > 0.5 GeV$ (for Atlas)


Choice of R:

- Cone radius R = 0.7.
- However cut is not very sensitive on choice of R.

Number of events outside dijet:

Number of events outside dijet for various R:

Comparison of results

- Results cut 3.5 interaction in bunch crossing and integrated luminosity $30 fb^{-1}$:
- Andy: MC on generator level, Atlas accept.
- Vojtěch: Atlas accept.
- Marek: CMS accept.

Process	A	ndy	Vojtěch		Marek
	5mm dist. from bean	3 mm dist. from bean	Dpemc	Exhume	
H ightarrow bb	1	3.45	2.8	2.8	1.5
gg ightarrow bb	2	6	11	8	5
gg ightarrow gg	3	8	-	2 (not final result)	-
Pile – up	0.4	1.3	1 (Pythia)	0 (Jimmy)	11
Inclusive $q\bar{q}$	$\simeq 0$	$\simeq 0$	\simeq 0	-	$\simeq 0$

- Quite good agreement.
- Differences can be explained by:
 - Different considered acceptances (main reason).
 - Different approaches.
 - Slightly different cuts setting.
 - Slightly different mass resolution of the detector.

DPE $H \rightarrow b\bar{b}$ studies

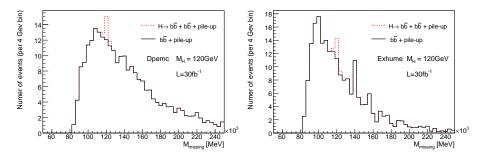
Pile-up+bb background (3.5 int. in bunch crossing)

DPE $H \rightarrow b\bar{b}$	Kin.	B-jets	R	P accept	back	to back	Rj
Dpemc	0.42	0.35	0.	68	0.88		0.87
Exhume	0.38	0.36	0.	76	0.87		0.88
	η	$N_C \wedge N$	c C	mass wi	ndow		
	0.94	0.97		0.68			
	0.94	0.97		0.68			

Acceptance factors for cut flow (by V.J.)

DPE bb	Kin.	B-jets	RP a	accept	back to	back	Rj
Dpemc	0.09	0.36	0.76		0.86		0.79
Exhume	0.04	0.4	0.71		0.9		0.67
	η	N _C /	$\setminus N_{C}^{\perp}$	mass	window		
	0.9	2 0.95		0.05			
	0.9	5 0.96		0.04			

Pile-up	Kin.	B-jets	RP accept	back to back	Rj
Herwig	0.17	0.075	0.005	0.37	0.114
Pythia	0.21	0.32	0.005	0.53	0.11
Jimmy	0.21	0.074	0.005	0.37	0.12


η	$N_C \wedge N_C^{\perp}$	mass window
0.054	0.117	0
0.054	0.07	0.021
0.056	0.026	0

Vojtěch Juránek (FZU Prague)

19. 10. 2007, Diffraction at LHC, Kraków 18/21

Pile-up and $b\bar{b}$ background (Pythia DWT)

- Exclusive Higgs boson production.
- Exclusive $b\bar{b}$ production.
- Pile-up+dijet (2 b-jets from non-difractive event (Pythia) + hits in RP from pile-up, 3.5 interactions in bunch crossing).

DPE $H \rightarrow b\bar{b}$ studies

- Results are in quite good agreement.
- It is expected about 2-3 events of signal and 10-15 events of background for low luminosity $(1 \cdot 10^{33} cm^{-2} s^{-1})$, integrated luminosity of $30 fb^{-1}$ (3 years of data taking at low luminosity) and 1 2% resolution of the detector in mass.
- Physical cuts (exclusivity, N_C) kill only small amount of signal.
- Signal is mostly killed due to detector acceptance and b-tagging.
- Huge differences between generators.
- The generators must be tuned first data from LHC are needed.

- B. Cox, K. Loebinger, A. Piklington; arXiv:0709.3035 [hep-ph]
- CMS/Totem Note CERN-LHC 2006-039/G-124
- M. Taševský; presentation at Hera-LHC workshop 2007 (http://indico.cern.ch/conferenceDisplay.py?confld=11784)
- A. Pilkington; presentation at Hera-LHC workshop 2007 (http://indico.cern.ch/conferenceDisplay.py?confId=11784)
- V. Juránek; presentation at Low X meeting 2007 (http://indico.cern.ch/conferenceDisplay.py?confId=21270)
- A. Pal, V. Juránek: Atlas note in preparation