Neutrino Interactions and the Oscillation Program

Kevin McFarland University of Rochester v New Directions Aspen Center for Physics 7 February 2013

Lucky to Have this Problem

- Those of us working on neutrino masses and mixings are very fortunate
 - Recent major investments in new programs: o NuMI, T2K, Reactor Experiments
 - Serious discussion (with money) of next steps:
 - o LBNE, Hyper-K, LBNO, Daya Bay II, INO ICAL, PINGU, ORCA, YAH (your acronym here)
 - Even nature is kind to us

 o If we'd had this experimental program,
 but θ₁₃ had not been so enormous, <u>τ</u>:

Sometimes good fortune leads to trouble

7 February 2013

K. McFarland, Neutrino Interactions

ν

It's a SuperYacht World

- Where better to contemplate the burdens of excess than Aspen?
- Prof. Walter was seated next to someone on his flight reading SuperYacht World magazine
 - "The global magazine for Superyacht owners"
- What problems do SuperYacht owners face?

SuperYacht Burdens

- SuperYacht owners must be able to entertain their fabulously wealthy friends in the style to which they are accustomed
- However, aesthetics of design and needs for nuisances like engines frequently lead to limited deck space on your 60m yacht

Capitalism to the Rescue!

- Fortunately, henrywarddesign [sic] has tackled this problem with solutions starting at £500,000
- Fully customized, stowable "recreational islands" that can be deployed from your SuperYacht!

Be grateful for your burdens

- Our burdens are not those of SuperYacht owners
- However, we do have some problems

(Parke 2003, arXiv:0710.554)

- Large θ_{13} means high rate of $v_{\mu} \rightarrow v_{e}...$
 - But fractional CP asymmetry decreases as θ₁₃ increases

 $\delta m_{23}^2, \theta_1$

 $\delta m_{12}^2, \theta_{12}$

- Nature put us here
- Systematics become critical

V

 V_{e}

Burdens (Hyper K)

 Discovery of CP violation in neutrino oscillations in conventional beams requires seeing distortions of P(v_µ→v_e) as a function of neutrino and anti-neutrino energy

- Maximum CP effect is range of red-blue curve
- Backgrounds are significant, vary with energy and are different between neutrino and anti-neutrino beams
 - Pileup of backgrounds at lower energy makes 2nd maximum only marginally useful in optimized design
- Spectral information plays a role
 - CP effect may show up primarily as a rate decrease in one beam and a spectral shift in the other

Burdens (Interactions & Targets)

- Although the weak interactions of neutrinos are, of course, well understood, application to our experimental needs is not
 - Nucleons have form factors
 - "Elastic" inside the nucleus probably isn't really elastic

 Inelastic reactions of strongly coupled systems are hard to calculate from first principles N^{\pm}

1 N N N N N N N

What deficiencies of knowledge might ruin our future neutrino oscillation experiments?

Oscillation Experiments and Near Detectors

- The classic description of an oscillation experiment
 - Predict the neutrino interaction rate before oscillations o The product of flux and cross-section
 - Calculate an oscillation probability as a function of neutrino energy
 - Compare to the far detector to measure oscillations
- Near detectors are a powerful tool for constraining uncertainties
 - In principle, near detectors measure the rate without oscillations, eliminating flux and interaction uncertainties.
 - "Identical" near detectors have same detection strengths and weaknesses as far detector

K. McFarland, Neutrino Interactions

Limitations of Near Detectors

- Limitations of even "perfect" near detectors:
 - 1. Flux is never identical near and far, because of oscillations if for no other reason.
 - 2. Near detector has backgrounds to reactions of interest which may not be identical to far detector (see #1).
 - These limitations lead to the need to separate flux and cross-sections based on near detector measurements.

Flux & σ Degeneracy

 Experiments have a, more or less, universal scheme for using the near detector data to get flux and cross-section

Limitations of Near Detectors

- Limitations of even "perfect" near detectors:
 - 1. Flux is never identical near and far, because of oscillations if for no other reason.
 - 2. Near detector has backgrounds to reactions of interest which may not be identical to far detector (see #1).
 - 3. Neutrino energy, on which the oscillation probability depends, may be smeared or biased.
 - 4. Near detectors measure (dominantly) interactions of muon neutrinos when signal is electron neutrinos.
- It is not straightforward to address #3 and #4 within your oscillation experiment

ν

1 M 1 1 M 10

What can ease our burdens?

ν

 Market forces alone are unlikely to solve our problems

- Improved theoretical models could lead to reliable calculations of interactions
- We could measure all the reactions in neutrino experiments or our near detectors
- We can make auxiliary (non-neutrino) measurements that indirectly constrain interaction models

- Improved theoretical models could lead to reliable calculations of interactions
 - QCD in the nucleus is not an exactly solvable problem
 - Models are effective theories, ranging from pure parameterizations of data to microphysical models with simplifying assumptions.
 - Effective theories are often only valid in a limited kinematic regime, or for a subset of possible final or intermediate states
 - Different approaches often give different results with sketchy guidance from first principles about which is "best"
- We could measure all the reactions in neutrino experiments or our near detectors
- We can make auxiliary (non-neutrino) measurements that indirectly constrain interaction models

- Improved theoretical models could lead to reliable calculations of interactions
- We could measure all the reactions in neutrino experiments or our near detectors
- We can make auxiliary (non-neutrino) measurements that indirectly constrain interaction models

K. McFarland, Neutrino Interactions

- Improved theoretical models could lead to reliable calculations of interactions
- We could measure all the reactions in dedicated neutrino experiments or our near detectors
 - Initial state energy of an event is typically upper not well known
 High flux "parrow
 - High flux "narrow band" beams aren't.

- Reconstructing the neutrino energy from the final state doesn't allow us to understand the bias that similar approaches would have in an oscillation experiment
- We can make auxiliary (non-neutrino) measurements that indirectly constrain interaction models

- Improved theoretical models could lead to reliable calculations of interactions
- We could measure all the reactions in neutrino experiments or our near detectors
- We can make auxiliary (non-neutrino) measurements that indirectly constrain interaction models
 - Electron scattering is a frequent input to most of the neutrino interaction models we use today
 - Wealth of data at JLab, for example, on elastic and inelastic processes on nuclei
 - But electron scattering can only probe the axial current indirectly, and sometimes access to kinematics relevant to neutrino scattering is difficult. E.g., 1/Q⁴ in propagator.

1 M 1 M 1 M 1

Lengthy Illustration: Modeling Quasi-Elastic Scattering

ν

Quasi-Elastic Energy Reconstruction

 Quasi-elastic reaction allows neutrino energy to be determined from only the outgoing lepton:

$$E_{\nu}^{\rm rec} = \frac{2(m_n - V)E_e + m_p^2 - (m_n - V)^2 - m_e^2}{2(m_n - V - E_e + p_e \cos \theta_e)}$$

- This assumes:
 - A single target nucleon, motionless in a potential well (the nucleus)
 - Smearing due to the nucleus is typically built into the cross-section model since it cannot be removed on an event-by-event basis.

7 February 2013

K. McFarland, Neutrino Interactions

Modeling the Nucleon in a Nucleus

- Our models come from theory tuned to electron scattering
- Generators usually use Fermi Gas model, which takes into account effect of the mean field.
- Corrections to electron data from isospin effects in neutrino scattering.

ν

Mean Field Approximation?

- There are many hints that the mean field approach isn't sufficient.
- EMC effect: modification of inclusive cross-section
- Recently, study of "size" of EMC effect in nuclei led to the conclusion that effect seems to vary with local rather than global density of nucleus

⁹Be is two tightly bound α loosely held with a neutron

(Figure courtesy APS Phys Rev Focus)

Short-Range Correlations

Recent Jlab studies of ¹²C quasielastic scattering have demonstrated significant probabilities to see multiple nucleons knocked out beyond expectation from final state interactions. [R. Subedi et al.,

Science **320**, 1476 (2008)]

n-p n-n p-p

- Kinematics of interaction may be altered because scattering in nuclear environment occurs from a correlated pair ~20% of the time. Dekker et al., PLB 266
- Not a new idea to apply to quasi-elastic scattering.
 Evidence in charged lepton scattering now strengthens the case.

Dekker et al., PLB **266**, 249 (1991) Singh, Oset, NP **A542**, 587 (1992) Gil et al., NP **A627**, 543 (1997) J. Marteau, NPPS **112**, 203 (2002) Nieves et al., PRC **70**, 055503 (2004) Martini et al., PRC 80, 065001 (2009)

Origin of MiniBooNE CCQE "Axial Mass"?

• From the ¹²C experiment and calculations, expect a cross-section enhancement from correlated process:

$v_{\mu}n \rightarrow \mu p + v_{\mu}(np)_{corr} \rightarrow \mu p$

New work since Martini proposal Nieves et al., arXiv:1106.5374 [hep-ph] Bodek et al., arXiv:1106.0340 [hep-ph] Amaro, et al., arXiv:1104.5446 [nucl-th] Antonov, et al., arXiv:1104.0125 Benhar, et al., arXiv:1103.0987 [nucl-th] Meucci, et al., Phys. Rev. C83, 064614 (2011) Ankowski, et al., Phys. Rev. C83, 054616 (2011) Nieves, et al., Phys. Rev. C83, 045501 (2011) Amaro, et al., arXiv:1012.4265 [hep-ex] Alvarez-Ruso, arXiv:1012.3871[nucl-th] Benhar, arXiv:1012.2032 [nucl-th] Martinez, et al., Phys. Lett B697, 477 (2011) Amaro, et al., Phys. Lett B696, 151 (2011) Martini, et al., Phys. Rev C81, 045502 (2010) [compilation by G.P. Zeller]

K. McFarland, Neutrino Interactions

Energy Reconstruction: Quasi-Elastic

- How does it quantitatively matter if we model this as an effective axial mass or microphysically?
- Inferred neutrino energy changes if target is multinucleon.

Modeling Multi-nucleon Correlations

- There are several microphysical calculations on the market, but they share several key features.
 - They are all based on effective theories valid over limited ranges of energy, kinematics. Theoretical systematics are difficult to control.
 - Calculations are just starting to see effect in the right set of variables (inclusive lepton energy and angle) for high precision comparison with data...
 - ... or to predict the kinematic effects!
- My personal conclusion: calculations need more experimental validation before they are reliable.
 - Good news: lots of data soon to be available.
 - Bad news: difficult to directly observe energy smearing.

ν

Parameterizing Multi-Nucleon Correlations

- Independent of models, can look for the effect in electron scattering
- Should show up as an enhancement to the transverse scattering
 cross-section on nuclei not seen on free nucleons
 - Do we learn enough from electron scattering data alone about the kinematic details? Probably not.
 - A. Bodek, H.S. Budd, M.E. Christy Eur.Phys.J. C71 (2011) 1726

Preliminary E04–001, E = 1.204, Ø = 28.011

K. McFarland, Neutrino Interactions

Neutrino Data

Anti-neutrino CCQE on scintillator (CH)

Neutrino Data

- Recall that multi-nucleon enhancements imply additional final state particles
- In MINERvA, additional protons would appear as enhanced energy near vertex, and additional neutrons as order(10) MeV "splashes" which are rare near vertex

Neutrino Data

- Liquid argon has excellent resolution for final state
- Example: ArgoNeuT, a small liquid argon TPC test in NuMI beamline
- New results from Tingjun on Friday

Other detectors capable of seeing recoil protons can (and will) look for this *Difficulty will be separation* of the effects of final state interactions from initial state correlations

Promising line of study

7 February 2013

K. McFarland, Neutrino Interactions

32

Other Puzzles and Progress

ν

Energy Reconstruction: Inelastic

- This problem is worse than the elastic case
- Detector energy response varies
 - Neutrons often exit without interacting
 - Proton and alpha ionization saturates
 - π⁻ capture on nuclei at rest, π⁺ decay, π⁰ decay to photons and leave their rest mass in detector
 - Any detector, even liquid argon, will only correctly identify a fraction of the final state
 - Need to know details of final state in four vector and particle content to correct for response

What We Want to Know about Pions

• Is our model of pion production from free nucleons accurate? [Rein & Sehgal, Ann. Phys. 133, 79-153 (1981)]

> If we only study pion production on nuclei, can we ever cleanly separate the free-nucleon crosssection from final state effects?

 What happens to our nucleon level prediction when you hide the target in a nucleus?

Pion Production Confronts Neutrino Data... and Fails

- Hydrogen datasets in conflict, so hard to have a definitive determination of axial form factor
- MiniBooNE CC pion production data gives an unexpectedly hard pion spectrum, as though the nucleus were transparent to the produced pion

Models for Short-Range Correlations, EMC Effect..

- A major goal is to make reliable^{1.2} measurements analogous to EMC in neutrino scattering
 - Different models of EMC effect have varying predictions for neutrinos
- Fe/D₂ ratio of F_2^{v} .
 - Ratio of bubble chamber experiments (FNAL/CERN) to CDHS (CERN)
 - Challenging because of different beam flux, low statistics in bubble chambers.
 - After 30 years, time to advance the state of the data and test EMC models?

MINERvA's Pb/CH Ratio

- Measure ratios of passive target to nearby scintillator
- Many reconstruction and flux uncertainties cancel
 - This preliminary result validates the approach $5 \frac{Pb}{CCV_{\mu}} / \sigma_{CCV_{\mu}}$
- Have a factor of four more data on tape and some tricks to play to increase acceptance
- Measurement becomes more interesting in NOvA era

Lepton Mass in Quasi-Elastic Scattering Melanie Day and KSM, Phys. Rev. D86 (2012) 053003

Differences arise from kinematic limits and mass-dependent terms.

- Uncertainties in form factors of nucleon lead to uncertainties in the differences of muon and electron neutrino reaction rates.
- Six allowed form factors of the nucleon that enter:
 - Two "ordinary" vector and one axial form factor
 - Vector form factors can be measured in electron scattering.
 Axial form factor from pion leptoproduction, neutrino CCQE on D₂.
 - One pseudoscalar form factor
 - o Predicted by PCAC and Goldberger-Treiman to be small
 - o Experimental tests of these assumptions exist.
 - One vector and one axial "second class" current
 - Assumed to be zero because they violate charge symmetry (not a perfect symmetry, e.g., m_n≠m_p) in nucleon system.
 - o Constrained (poorly) from beta decay and muon capture.

Results for Neutrino Cross-Section Differences

- Possible effect from F³_V of few % at J-PARC to HK
 - Neutrino and anti-neutrino effects are opposite in sign for second class currents, so could fake a CP asymmetry.

1 N N N N N N N

A few crazy ways forward for Neutrino Measurements

Back to the Future: Deuterium

- MINERvA approach of multiple targets in the same beam has a weakness: no free nucleons
 - MINERvA proposed a 0.25t fiducial volume passive target (He→D₂), but statistics were marginal in low energy beam and efficiencies are not ideal
 - Serious safety concerns even with 10⁻³ Hindenburgs in an underground cavern. Oh the humanity.

7 February 2013

K. McFarland, Neutrino Interactions

ANN: Artificially Narrowband Neutrinos

- Premise: detectors with a perfectly known, and preferably tunable, flux would allow a measurement of neutrino energy biases and smearing.
- Observation from T2K INGRID team (A. Ichikawa et al): low and high tails of flux similar as move off-axis
- Narrow range of neutrino energies where flux changes.

7 February 2013

K. McFarland, Neutrino Interactions

 E_{v} (GeV) 44

ANN: Proof of Principle

 Can do a reasonable job reducing the high energy and low energy fluxes with simple linear combinations of bins of nearby angles:

 $\varphi_{sub} = \varphi(1.5^{\circ}) - 0.34\varphi(1.0^{\circ}) - 0.42\varphi(2.5^{\circ})$

- Can narrow (in principle), by narrowing bins of angle (statistics)
- Also need to look at effect of hadroproduction uncertainties

ANN: Near Detector Complex

- Turning this from a flux plot into reality?
 - Instrumenting 80mrad of off-axis angle at a reasonable distance from source is sobering

ANN: Near Detector Complex

- Turning this from a flux plot into reality?
 - Instrumenting 80mrad of off-axis angle at a reasonable distance from source is sobering

ANN: Near Detector Complex

- Turning this from a flux plot into reality?
 - Instrumenting 80mrad of off-axis angle at a reasonable distance from source is sobering

Conclusions

ν

Interactions and Future Oscillation Experiments

- Large θ₁₃ makes systematics a major problem for future ~GeV oscillation experiments
- Obtaining accurate models of neutrino interactions at required energies is a difficult problem.
- Interplay of data, including new data from MINERvA, T2K, ArgoNeuT/MicroBooNE, NOvA, with theory is essential to progress.

Interactions and Future Oscillation Experiments

- Large θ₁₃ makes systematics a major problem for future ~GeV oscillation experiments
- Obtaining accurate models of neutrino interactions at required energies is a difficult problem.
- Interplay of data, including new data from MINERvA, T2K, ArgoNeuT/MicroBooNE, NOvA, with theory is essential to progress.
- Please continue to enjoy the challenge of landing your (metaphorical) helicopter on your (metaphorical) SuperYacht

Backup

ν

Llewellyn Smith Quasi-Elastic Scattering

• Avert your gaze... $\frac{\frac{d\sigma}{dQ^2} \binom{\nu n \to l^- p}{\overline{\nu}_{p \to l^+ n}} = \left[A(Q^2) \mp B(Q^2) \frac{s - u}{M^2} + C(Q^2) \frac{(s - u)^2}{M^4} \right] \times \frac{M^2 G_F^2 \cos^2 \theta_c}{8\pi E^2}$

$$\begin{split} A(Q^2) &= \frac{m^2 + Q^2}{4M^2} \left[\left(4 + \frac{Q^2}{M^2} \right) |F_A|^2 - \left(4 - \frac{Q^2}{M^2} \right) |F_V^1|^2 + \frac{Q^2}{M^2} \xi |F_V^2|^2 \left(1 - \frac{Q^2}{4M^2} \right) + \frac{4Q^2 ReF_V^{1*} \xi F_V^2}{M^2} \\ &- \frac{Q^2}{M^2} \left(4 + \frac{Q^2}{M^2} \right) |F_A^3|^2 - \frac{m^2}{M^2} \left(|F_V^1 + \xi F_V^2|^2 + |F_A + 2F_P|^2 - \left(4 + \frac{Q^2}{M^2} \right) \left(|F_V^3|^2 + |F_P|^2 \right) \right) \right], \\ B(Q^2) &= \frac{Q^2}{M^2} ReF_A^* \left(F_V^1 + \xi F_V^2 \right) - \frac{m^2}{M^2} Re \left[\left(F_V^1 - \frac{Q^2}{4M^2} \xi F_V^2 \right)^* F_V^3 - \left(F_A - \frac{Q^2 F_P}{2M^2} \right)^* F_A^3 \right] \text{ and } \\ C(Q^2) &= \frac{1}{4} \left(|F_A|^2 + |F_V^1|^2 + \frac{Q^2}{M^2} \left| \frac{\xi F_V^2}{2} \right|^2 + \frac{Q^2}{M^2} |F_A^3|^2 \right). \end{split}$$

Two terms, including those with F_P, and F³_V, enter with a factor of m²/M². These are relevant for muon neutrinos at low energies but not for electron neutrinos.

MiniBooNE

- v_e appearance with a conventional (meson decay) wide-band beam
 - Significant backgrounds from neutral currents (π⁰s), but are measured *in situ*

- Signal identification is exclusive quasi-elastic. Lepton kinematics used to infer neutrino energy.
 - Parameters of signal reaction constrained with muon neutrino quasi-elastic sample

7 February 2013

K. McFarland, Neutrino Interactions

T2K

- v_e appearance with a conventional
 - (meson decay) narrow-band beam
 Backgrounds from neutral currents (π⁰s), but here rate is too low to constrain in far detector
 - o Fit external data to constrain production
 - Signal identification is also restrictive and use lepton kinematics to infer neutrino energy, as with MiniBooNE
- Even after near detector constraint, still have significant uncertainties from interactions.

Reconstructed v energy (MeV) (T. Nakaya, Neutrino 2012)

Systematic Errors

	sin ² 20 ₁₃ =0.1	sin ² 20 ₁₃ =0.0
Flux+Xsec in T2K fit	5.7%	8.7%
Xsec (from other exp.)	7.5%	5.9%
SK + FSI	3.9%	7.7%
Total	10.3%	13.4%

A Long-Standing Puzzle: The EMC Effect

- Charged lepton F₂^A/F₂^D shows convincingly modification of quark distributions in a nucleus
 - No model of nucleus as an incoherent sum of nucleons can reproduce this effect.
 - No conclusive model of the collective behavior exists.

- Empirically, we know that the qualitative dependence on x is the same for all nuclei
 - But size of effect varies with the nucleus studied

"Axial Mass Puzzle"

- As described earlier, M_A has been measured to be 1.03 GeV/c² in vD₂ and pion electroproduction
 - A slew of low energy data (MiniBooNE, SciBooNE, K2K) prefers a higher axial mass and therefore higher σ
 - What is going on in the nuclear environment to create this effect?

MINERvA's Targets

- Goal: High statistics ratios of Fe/Pb/C/O/He in identical flux
 - Extract x-dependent nuclear effects as a function of A!
- Targets surrounded by active scintillator.
 - Some thick targets for "high" rate.
 - Also thin targets for exclusive final states.

Neutrino Generators: "State of the Art"

- GENIE, NUANCE, NEUT, NuWro are the generators currently used in neutrino oscillation experiments.
- Share same approach, with minor variations
 - Relativistic Fermi Gas in Initial State
 - Free nucleon cross-sections

o Llewellyn Smith formalism for quasi-elastic scattering ^{3C, 261–379} (1972)

Rein-Sehgal [Ann. Phys. 133, 79-153 (1981)]

o Rein-Sehgal calcluation/fit for resonance production

o Duality based models for deep inelastic scattering

Bodek-Yang arXiV:1011.6592

ν

- Cascade models for final state interactions
 - o Roughly, propagate final state particles through nucleus and allow them to interact. Constrained by πN , NN measurements.
- Improvements (nuclear model, reaction models) are in progress, but behind "best" theory models.

The Essential Tension

Ulrich Mosel's brilliant observation at NuINT11:

- Theorist's paradigm: "A good generator does not have to fit the data, provided [its model] is right"
- Experimentalist's paradigm: "A good generator does not have to be right, provided it fits the data"
- Most of the generators currently used by oscillation experiments (NUANCE, GENIE, NEUT) are written and tuned by experimentalists
 - See above! Our generators are wrong. WRONG!
- Models do not fit (all) the data, although they provide insight into features of this data

ν