Muons, short or long, won't go wrong

Patrick Huber

Center for Neutrino Physics at Virginia Tech

ACP Winter Workshop on New Directions in Neutrino Physics February 4-9, 2013, Aspen, CO

I don't want to look like him by the time we understand the origin of neutrino mass!

Neutrinos are massive – so what?

Neutrinos in the Standard Model (SM) are strictly massless, therefore the discovery of neutrino oscillation, which implies non-zero neutrino masses requires the addition of new degrees of freedom.

The discovery of a light sterile neutrino could well be the most significant piece of BSM physics in the last 30 years.

We always knew they are ...

The SM is an effective field theory, *i.e.* at some high scale Λ new degrees of freedom will appear

$$\mathcal{L}_{SM} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \dots$$

The first operators sensitive to new physics have dimension 5. It turns out there is only one dimension 5 operator

$$\mathcal{L}_5 = \frac{1}{\Lambda}(LH)(LH) \to \frac{1}{\Lambda}(L\langle H \rangle)(L\langle H \rangle) = m_{\nu}\nu\nu$$

Thus studying neutrino masses is, in principle, the most sensitive probe for new physics at high scales Weinberg

Effective theories

The problem in effective theories is, that there are *a* priori unknown pre-factors for each operator

$$\mathcal{L}_{SM} + \frac{\#}{\Lambda} \mathcal{L}_5 + \frac{\#}{\Lambda^2} \mathcal{L}_6 + \dots$$

Typically, one has $\# = \mathcal{O}(1)$, but there may be reasons for this being wrong

- lepton number may be conserved → no Majorana mass term
- lepton number may be approximately conserved \rightarrow small pre-factor for \mathcal{L}_5

Therefore, we do not know the scale of new physics responsible for neutrino masses.

Flavor models

Simplest un-model – anarchy Murayama, Naba, DeGouvea

$$dU = ds_{12}^2 dc_{13}^4 ds_{23}^2 d\delta_{CP} d\chi_1 d\chi_2$$

predicts flat distribution in δ_{CP}

Simplest model – Tri-bimaximal mixing Harrison, Perkins, Scott

$$\begin{pmatrix}
\sqrt{\frac{1}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{pmatrix}$$

to still fit data, obviously corrections are needed – predictivity?

P. Huber – VT-CNP – p. 6

Sum rules

 3σ resolution of 15° distance requires 5° error. NB – smaller error on θ_{12} requires dedicated experiment like Daya Bay II

Traditional beam

Neutrino beam from π -decay

- primary ν_{μ} flux constrained to 5-15%
- ν_e component known to about 20%
- anti-neutrino beam systematically different large wrong sign contamination
- ν_e difficult to distinguish from NC events

Limitations

PH, M. Mezzetto, T. Schwetz arXiv:0711.2950

Appearance experiments using a (nearly) flavor pure beam can not rely on a near detector to predict the signal at the far site!

For short-baseline experiments, we are looking for a 0.3% $\bar{\nu}_e$ -appearance on top of a 1% beam background!

More limitations

Nuclear effects change the relation between true neutrino energy and lepton energy

Lalakulich, Mosel, arXiv:1208.3678.

Inferring the CP phase from QE spectrum seems quite difficult – no quantitative analysis with respect to oscillation physics, yet.

Not obvious that near detectors alone can solve this problem.

NB – in $\bar{\nu}$ events the outgoing neutron is invisible

Stored muon beam

This requires a detector which can distinguish μ^+ from $\mu^- \Rightarrow$ magnetic field of around 1T

- beam known to %-level or better
- muon detection very clean
- multitude of channels available

Baseline neutrino factory

10 GeV muon energy
1E21 useful muon decays per straight and polarity, in 1E7 s

2 000 km baseline 100 kt magnetized iron detector (MIND)

Based on a 4 MW proton driver, which is going to become available as part of Project X phase IV, *i.e.* in the 2030s

Performance

2020 – T2K, NO ν A and Daya Bay nominal runs

LBNE – 1300 km, 34 kt $0.7 \, \text{MW}, \, 2 \times 10^8 \, \text{s}$

WBB - 2300 km, 100 kt 0.8 MW, 1×10^8 s

T2HK - 295 km, 560 kt 0.7 MW, 1.2×10^8 s

all masses are fiducial

LBNO EOI submitted to CERN – 20 kt LAr + MIND, similar beam power to above, but Finish government will not support Pyhäsalmi lab

P. Coloma, PH, J. Kopp and W. Winter, arXiv:1209.5973.

An entry level neutrino factory

5 GeV muon energy

Running time increase to 2E7s – luminosity \times 2

A 700 kW proton driver, maybe 60 GeV (MI) – luminosity \times 0.1-0.2

No muon cooling – luminosity \times 0.5

⇒ 1E20 useful muon decays per straight and polarity,

based on existing proton beams and technology

1300 km baseline

10 kt magnetized liquid argon detector

⇒ reuse as much as possible from LBNE phase I

The following is based on

E. Christensen, P. Coloma, PH, arXiv:1301.7727

The platinum channel

The $\nu_{\mu} \rightarrow \nu_{e}$ channel is the CPT conjugate of the $\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}$ channel

As a result matter effects effectively cancel

This has been know for quite a while, but the effect is only relevant for large θ_{13}

NB: LBNE-mini corresponds to the LBNE CDR (CD1)

Detector assumptions

TASD – based on simulation Fernandez-Martinez, *et al.*, arXiv:0911.3776.

Channel	Effs.	au Rej.	NC/CID/FID Rej.	$\Delta E/E$
ν_{μ} app.	73%-94%	0%	99.9%	$0.2/\sqrt{E}$
ν_e app.	37%-47%	0%	99%	$0.15/\sqrt{E}$
$ u_{\mu}$ dis.	73%-94%	0%	99.9%	$0.2/\sqrt{E}$

Magnetized LAr

Channel	Effs.	au Rej.	NC/CID/FID Rej.	ΔE
ν_{μ} app.	80%	0%	99.9%	$0.2/\sqrt{E}$
ν_e app.	80%	0%	99.9%	$0.15/\sqrt{E}$
$ u_{\mu}$ dis.	80%	0%	99.9%	$0.2/\sqrt{E}$

 ν_{τ} backgrounds included.

CP violation

Significant advantage for CP violation

Starting point for a staged scenario towards a full neutrino factory

CP precision

Solid line – magnetized LAr Dashed line – magnetized TASD

The obtainable precision is nearly everywhere better than LBNE's by about 9 degrees (1/3)

Summary

Observations

- Detectors probably have to be underground because of large duty factor
- 4 GeV muon energy probably works equally well
- The end goal in this case will be a 5 GeV machine. Potentially, with a larger LAr detector performance en par with NF baseline

Open issues

- Can one magnetize a liquid argon detector?
- Performance of magnetized LAr?

