A New Method for Event Reconstruction in Large Cherenkov Detectors

Michael Wilking, TRIUMF New Directions in Neutrino Physics Aspen, CO 4-Feb-2013

Physics Applications

- Search for proton decay
- Supernovae
 - SN burst
 - Relic SN background
- Neutrino physics
 - Solar neutrinos
 - Atmospheric neutrinos
 - Accelerator neutrinos
 - High-Energy astrophysical neutrinos
 - ...
- Broad physics reach
 - Much to be gained from better utilizing this technology

Kamiokande SN 1987a Signal

SNO Single-Electron Event

The Super-K Detector

- 50 kton water Cherenkov detector
- μ[±] detection
 - Less scattering \Rightarrow sharp rings
- e[±] detection
 - More scattering \Rightarrow fuzzy rings
- π^{o} detection
 - Selectron rings (π⁰→2γ)
 - To separate from electrons, **MUST** detect 2nd ring

fiTQun: A New Event Reconstruction Algorithm for Super-K

- For each Super-K event we have, for every hit PMT
 - A measured charge
 - A measured time
- For a given event topology hypothesis, it is possible to produce a change and time PDF for each PMT
 - Based on the likelihood model used by MiniBooNE (NIM A608, 206 (2009))
- Framework can handle any number of reconstructed tracks
 - Same fit machinery used for all event topologies (e.g. e^{-} and π^{0})
- Event hypotheses are distinguished by **comparing best-fit likelihoods**
 - electron / π^0
 - electron / muon / π^+ / K⁺ / p / ...
 - 1-ring / 2-ring / 3-ring ...

The Likelihood Fit

- A single track can be specified by a particle type, and 7 kinematic variables (represented above as the vector x):
 - A vertex position (X, Y, Z, T)
 - A track momentum (p)
 - A track direction (θ, ϕ)
- For a given **x**, a charge and time PDF is produced for every PMT
- The **charge PDF** is factorized into:
 - Number of photons reaching the PMT
 - Predicted charge (µ)
 - PMT & electronics response
 - All 7 track parameters fit simultaneously

Property of the electronics and PMT properties

Time PDF

Predicted Charge (µ):

Number of photons that reach the PMT
Depends on detector properties (scat, abs, etc.)

Predicted Charge (μ)

Integral over

track length

 $dsg(s, \cos \theta)\Omega(R)T(R)\epsilon(\eta)$

Water

attenuation

PMT

angular

response

70 Ω₆₀

milc

PMT

solid

angle

Cherenkov light emission profile

- µ^{dir} is the predicted charge due to "direct light" only (scattered light is handled separately)
- µ is an integral over the length of the track (parameterized by the momentum, p)

 $\mu^{\rm dir} = \Phi(p)$

Light

Yield

- Cherenkov light emission is characterized by $g(s, \cos\theta)$ *
 - These functions must be generated separately for * each particle type
 - All particle ID comes from these distributions *
 - Ω , T, and ε depend on the geometry and detector properties
 - Can be used for all particle hypotheses *

PMT solid angle

0.2 0.3 0.4 0.5 0.6

0.7

0.8 0.9 $\cos \theta$ 0.4

0.3

0.2

0.1

One-Track Fit Performance

Shown with default Super-K reconstruction, **apfit**, for comparison

Muons

Tested on a uniform distribution of muons between 0 and 1 GeV/c

 Isotropic & random position (inside FV & charge>200pe)

Significant improvements in the vertex and momentum resolution

Vertex

60

80

100

Distance Between Fit and True Vertex [cm]

120

140

apfit

Electrons

 Tested on a uniform distribution of e⁻ between 0 and 1 GeV/c

 Isotropic & random position (inside FV & charge>200pe)

Significant improvements in the vertex and momentum resolution

Single Track Particle ID

Test Case: The T2K Experiment

Super-K Detector

J-PARC Accelerator

- The T2K experiment searches for neutrino oscillations in a high purity v_{μ} beam
- A near detector located 280 m downstream of the target measures the unoscillated neutrino spectrum
- The neutrinos travel 295 km to the Super-Kamiokande water Cherenkov detector
 - For θ_{13} search: Super-K looks for the appearance of v_e
 - For θ_{23} measurement: The v_{μ} at the near and far detectors are compared to search for v_{μ} disappearance

Near Detector

Latest T2K v_e Results (2012)

- 11 events observed
- $\sin^2 2\theta_{13} = 0.094^{+0.053}_{-0.040}$
- **3.2** σ exclusion of θ_{13} =0

- 3.22 ± 0.43 background events
 - 1.56 ± 0.20 intrinsic beam v_e
 - Irreducible
 - 1.26 ± 0.35 v_{μ} neutral current (mostly π^{0})
 - Reducible?

Background Reduction

40% of the v_e appearance background is from π^0 where the 2nd photon was missed

Can fiTQun do better?

fiTQun π^0 Fitter

- Assumes two electron hypothesis rings produced at a common vertex
- **12 parameters** (single track fit had '7)
 - Vertex (X, Y, Z, T)
 - Directions $(\theta_1, \phi_1, \theta_2, \phi_2)$
 - Momenta (p_1, p_2)
 - Conversion lengths (c_1, c_2)
- Seeding the fit
 - Use result of single-track electron fit
 - Scan over various directions with a 50 MeV/c electron and evaluate the likelihood function
 - Choose the direction that yields the best likelihood
 - First, fit while floating only p_1 and p_2
- Do full 12 parameter fit

π^0 Performance

- T2K v_e appearance cut: $m_{\pi 0} < 105$ MeV
- The π⁰ mass tail is much smaller for fiTQun
 - Significant spike at zero mass in standard fitting algorithm (**apfit**)
 - All events in the spike are background
 - fiTQun shows no spike
- Lower plot:
 π⁰ rejection efficiency vs
 lower γ energy
 - fiTQun is more sensitive to lower energy photons

Even Better π^0 Rejection

- fiTQun can also use the
 likelihood ratio to distinguish
 e⁻ from π⁰
 - Even if 2nd photon is identified, it may be on the tail of the π⁰ mass resolution
 - In this case, the 2-ring likelihood will still be preferred
 - 2D cut **removes 75% more** π^o **background**
 - For the same electron signal efficiency

Likelihood Ratio vs π^0 Mass

Effect on v_e Appearance

- π⁰ background has >30% error (flux + cross section)
 - Error on **beam** v_e background is only ~12%
- Background due to π^0 is reduced by ~75%

For 3.01 * 10 ²⁰ POT	fiTQun	apfit
# π ⁰ bkgd	0.29	1.13
# Total bkgd	1.94 ± 0.24	2.93 ± 0.46

- Total background is reduced by 33%
 - More importantly, **background error is halved**
 - Significant improvement in $\sin^2 2\theta_{13}$ sensitivity
- Other fiTQun improvements (e.g. e⁻ PID, ring counting) improve the sensitivity further

Other fiTQun Tools: π⁺ Fitter

tracks

muon tracks pion tracks

- Pions and muons have very similar Cherenkov profiles
 - Main difference is the **hadronic interactions** of pions
- Ring pattern observed is a "kinked" pion trajectory (thin ring with the center portion missing)
- π⁺ tracks have never been reconstructed before at Super-K

Other Tools: Multi-ring Fitter

- Fit up to 4 rings using e & π⁺ hypotheses
 - 28 fits in total (every possible e/π^+ combination)
- μ hypothesis is a subset of the π^+ hypothesis
 - Just need to move the kink point below Cherenkov threshold

Ring Counting

- Compare best (n)-ring likelihood to best (n+1)-ring likelihood
 - Ring counting now depends on particle ID
- Can test performance on atmospheric neutrino sample
 - Higher energy neutrinos = more rings
 - Define a "true ring"
 - Any particle >10 MeV/c above Cherenkov threshold
- Good performance seen up to 4 rings

- Largest backgrounds are from $CC\pi^+$ and $NC\pi^+$
 - **NG** π^+ : pion is misidentified as a muon
 - Super-K reconstruction uncertainty on π^+ is large (>100%)
 - CCπ⁺: pion is unobserved

은 0.9 음 0.8

- The fiTQun can now reconstruct π^+
 - If properly reconstructed, $CC\pi^+$ can be treated as signal

defic

0.8

v_{μ} Selection: fiTQun vs apfit

• fiTQun signal efficiency is higher below I GeV

Fraction of apfit selected events removed:

v_{μ} + \overline{v}_{μ} CCQE	4.8%
ν _μ +ν _μ ϹϹΙπ	21.5%
$\nu_{\mu} + \overline{\nu}_{\mu}$ CCother	53.7%
$v_e + \overline{v}_e CC$	92. 1%
NC	61.2%

- Significant reduction of NC background due to π^+ rejection
 - NCπ⁺ background has a very large uncertainty (>100%)
 - NC π^+ piles up near the oscillation dip

Expect significant enhancement in θ_{23} and Δm^{2}_{32} sensitivity

Other Uses for fiTQun

In principle, any Super-K physics analysis can benefit from fiTQun

Particularly, Proton Decay

Reconstruction requirements are very similar to T2K v_e appearance requirements

$p \rightarrow e^{+}\pi^{0}$

- 45% reconstruction efficiency with current? Super-K tools
 - Selection allor reconstructed

- fiTQun has improved identification of faint photon rings
 - Should improve signal efficiency (for 3-ring events)
 - Analogous to T2K π^0 search
- Improved electron resolution
 - Better constraints on momentum balance and reconstructed π^0 and p masses
 - Can tighten cuts to improve background rejection

- Search via the largest two K⁺ decay channels
- $\mathbf{K}^{+} \rightarrow \mu^{+} \nu_{\mu}$

•

•

- Search for a mono-energetic muon
 - fiTQun has improved muon momentum resolution
- Search for 6 MeV photon from nuclear de-excitation
 - Very low energy \rightarrow current algorithm is very inefficient
 - Only 6.4% efficiency (44% have a nuclear photon)
 - **Large potential improvement** if low-energy photon detection can be improved

u+

- $K^+ \rightarrow \pi^+ \pi^0$
 - No previous ability to reco
 - Instead, sum charge in the π^0 direction
 - veto on any other char
 - **fiTQun can reconstruct charged pions**
 - Can also do simultaneous π⁺γγ fit and compare likelihood with background hypotheses

Future Experiments: Hyper-K

- _e CC 3606 2339 CC 0.99 Mton of water (ucia 23 CC 35 CC ″e+″ - CC 880 878 ″ e CC Physics goals include θ_{a} NC 649 NC 678
- Same detector design, neutrino beam, backgrounds, etc. as Super-K/T2K
 - Expect similar improvements in performance
- fiTQun has recently been adapted to the Hyper-K software

IceCube, DeepCore, Pingu, MICA

• There are plans to increase the number of photo-detectors in the ice

- See talks Thursday morning
- This is a problem fiTQun is even better suited to solve
 - Arbitrary phototube locations are naturally accommodated
 - No reflections from tank walls
 - Treatment of non-direct light is greatly simplified
- Proton decay, atmospheric v, ...

Neutrino Telescopes (IceCube, ANTARES, etc.)

IceCube

AMANDA

DeepCore

Summary

- fiTQun is a new reconstruction algorithm for large Cherenkov Detectors
- Significant improvements are seen over previously used algorithms
 - Large reductions in poorly understood backgrounds for T2K ν_e appearance and ν_μ disappearance measurements
- fiTQun is beginning to seep into other Super-K analyses
 - Atmospheric neutrinos
 - Proton Decay
- fiTQun can make important contributions to future Cherenkov detectors, such as Hyper-K and PINGU/MICA

Backups

Ring Counting

• Good discrimination seen up to ~4 rings

T2K v_{μ} Sample

- Large neutral-current (NC) background at low energy
 - Affects the position (Δm²) and depth (sin²2θ) of the oscillation dip
 - Uncertainty in Super-K π⁺ reconstruction is very large (> 100% error)
 - No previous algorithm to reconstruct charged pions
- fiTQun π⁺ rejection can be very helpful

Neutral Current (NC) Rejection

- Use π+/μ likelihood ratio
- CCQE signal looks muon-like
- A large fraction of the NC background lies above the cut line
 - NC background is mostly due to NCπ⁺
 - Also a small contribution from NC-proton

v_{μ} Signal Efficiency Comparison

 Around the oscillation dip, fiTQun has higher signal efficiency

 Signal loss by fiTQun selection is mostly in the high-energy tail region (>3GeV)

Data Validations

- We have begun a program for data-based fit validation
- Plan to test fiTQun over as many data samples as possible
 - Stopping cosmics
 - Electrons from µ-decay
 - Atmospheric neutrinos
 - Detector calibration samples
 - Cone generator
 - Calibration sources (e.g. Nickel ball)

Event Display: π^0 Fit

Measured Charge

1-ring e-like Fit Predicted Charge

Event Display

Kinked-track π^+ Fitter

Old Super-K Reconstruction

- 1. Find the event vertex with hit timing information
- 2. Determine number & direction of rings
 - Assume a 42° Cherenkov angle (maximum for water)
 - Use Hough transform to find hits belonging to a common ring
 - Discard dimmer rings if with 15° of another ring
- 3. Calculate the **particle type for each ring**
 - Use a Gaussian PDF for charge in each PMT based on expected charge pattern
 - Angle can be readjusted to improve fit
- 4. Sum all charge within 70° cone to **determine the ring** momentum
 - (where rings overlap, try to separate the charge based on expected ring pattern)
- This is a multi-step fitting procedure (apfit)

Default π^0 Rejection

- Specialized algorithm is used to **find soft photons**
 - POLFit "Pattern-Of-Light Fit"

•

•

- Finds photons **missed by ring counting** in apfit
- POLFit uses a "fiTQun-esqe" predicted-charge fit method
 - Several approximations are made:
 - Coarse scattered-light matrix
 - No photon conversion lengths
 - No reflections
 - No time likelihood
- POLFit **always returns a 2nd photon** momentum and direction
 - Cut on reconstructed invariant mass to remove π^0 background

Scattered Light

- More scattered light is detected for sources that are close to the wall
 - The same is true for PMTs near corners
- The scattered light in each PMT depends on:
 - Light source intensity
 - Track direction
 - **PMT** and source geometry
- Scattered light for each PMT is **normalized to direct light**
 - Accounts for the source intensity
 - Tabulate in advance:
 "Scattering Table", A_{scat}

Less reflection from wall More reflection from wall

 $d\mu^{indirect}$

 $A_{\text{scat}}(\theta_{\text{source}}, \varphi_{\text{source}}, \text{geometric variables}) =$

Scattering Tables

- Take advantage of cylindrical geometry
- A_{scat} will depend on
 - Source direction (θ_s, ϕ_s)
 - Source position $(\Theta_{ts}, \mathbf{R}_{s}, \mathbf{Z}_{s})$
 - Z_t for PMTs on the sides
 - $A_{side}(\theta_s, \phi_s, \Theta_{ts}, \mathbf{R}_s, \mathbf{Z}_s, \mathbf{Z}_t)$
 - **R**t for PMTs on the ends
 - $\mathbf{A}_{end}(\theta_s, \phi_s, \Theta_{ts}, \mathbf{R}_s, \mathbf{Z}_s, \mathbf{R}_t)$

• Must tabulate 6-dimensional scattering tables using the detector MC

PMT Charge Response

0.1

0.05

- For a given predicted charge, µ, we • need a PDF for the measured charge, q
- Use skdetsim to generate a Poisson • distributed charge in each PMT with mean µ
- This gives a 2D histogram of \bullet measured charge vs predicted charge
 - Each bin of measured charge is • normalized to 1 (to make proper charge PDF)
 - During the fit, charge is fixed • (only predicted charge varies)
 - Use distribution of μ at fixed a
- Use smoothed (i.e. fit) curves to improve minimization performance

12

14

20

22

24 μ (p.e.)

10

Time Likelihood

- For every PMT, we have calculated:
 - Predicted charge from direct light
 - Predicted charge from scattered light
 - For a predicted amount of direct light, need a PDF for the first hit arrival time
 - Also need a PDF for scattered light first hit time
 - For a given particle hypothesis, particle guns are run at many different momenta
 - Hit times (corrected for time of flight) are recorded in bins of predicted charge and momentum
 - Give priority to direct light, since it should reach the PMT first
 - $f_t = P(hit_{dir}) * f_{t,dir}(\mu) + (1-P(hit_{dir})) * f_{t,scat}(\mu)$
 - If there is a lot of direct light, the time PDF should default to the direct light time PDF

