Supported by Grant-in-Aid for Scientific Research (C) 24540295 and Grant-in-Aid for Scientific Research on Innovative Areas 24104501

IPNOS for low energy solar neutrinos and ZICOS for neutrinoless double beta decay

Aspen Winter Workshop--New Directions in Neutrino Physics February 4th ,2013

Yoshiyuki FUKUDA (Miyagi University of Education) S.MORIYAMA, H.Sekiya(ICRR, Univ. of Tokyo) I. Ogawa (Fukui University), T.Namba(ICEPP, Univ. of Tokyo), and M.Asakura, T.Izawa(Hamamatsu Photonics KK)

Indium Project on Neutrino Observation for Solar Interior (IPNOS) experiment for low energy solar neutrinos

Solar fusion cross sections are updated. (SF-II, Rev. of Mod. Phys. 83 (2011) 195)

Solar abundances: GS98 (High metallicity), AGSS09 (Low metallicity)

Aspen Winter Workshop--New Directions in Neutrino Physics

3

Experimental status

■ pp(0.6%): **7Be(7%)**: pep(1.2%): ■ 8B(14%):

hep(30%):

SAGE (all:5%,pp:14%), Gallex/GNO Homestake, Borexino (5%) Borexino (19%) Kamiokande, Super-K, SNO (4%), Borexino, KamLAND high precision spec. & d/n (SK, SNO, upper limit only) SK: 40x10^3 /cm2/s (90%CL, w/o osc.) PRL 86, 5651 (2001) SNO: 23x10^3 /cm2/s (90%CL, w/ osc.) ApJ 653, 1545 (2006) CNO (14~17%): (Borexino, upper limit only)

7.7x10^8 /cm2/s (95%CL, w/ osc.) arXiv:1110.3230

purification efforts are now on-going

radiochemical experiments theoretical / experimental uncertainties

Takeuchi @ LowNu2011

#eb 4th, 2013

Current targets **Neutrino physics**

Vacuum-MSW transition pep flux(ES,CC), 8B spectrum, Precise theta12 pp flux, 8B spectrum, ...

Astrophysics

Separate solar models CNO fluxes Solar core high stat. solar v Aspen Winter Wor **Directions in Neutr** Feb 4th, 2013

E.,

[MeV]

Future solar neutrino projects Takeuchi @ LowNu2011

project	target for solar v	current status / recent information	
pep/CNO (ES)			
SNO+	1kt LS	under construction	
KamLAND2	1kt LS	will be after KamLAND-Zen	
pp(ES)			
XMASS	10 ton(FV) Lq. Xe	commissioning of XMASS-I (total 1ton, ~0.1ton FV)	
CLEAN	50 ton Lq. Ne	MiniCLEAN is under construction	
HERON	10 ton Lq. He	will not built a full detector (Astropart. Phys. 30, 1 (2008))	
pp/7Be(CC)			
LENS	10ton 115In	R&D (In loaded LS)	
IPNOS	115In	R&D (InP cell + Lq. Xe detector)	
MOON	1.5~3ton 100Mo	R&D (EC branch of 100Tc was measured)	
Next generation			
Water Cherenkov	Megaton water	LOI from Hyper-K (arXiv:1109.3262)	
Lq. Scintillator	~0.1Mton LS	white paper from LENA (arXiv:1104.5620)	

Capture of low energy solar neutrinos by ¹¹⁵In

Nuclear Physics A 748 (2005) 333-347

 115 In + ν_e → 115 Sn* + e⁻ 115 Sn*(4.76µs) → 115 Sn + γ_1 (115keV) + γ ₂(497keV) Advantage

large cross section (~640SNU)
direct counting for solar neutrinos
sensitive to low energy region (E_v ≧ 125keV)
energy measurement (E_e = E_v - 125keV)
triple fold coincidence to extract neutrino signal from huge BG (e₁ +γ₂ + γ₃)
Disadvantage
natural β-decay of ¹¹⁵In (τ_{1/2} = 4.4 × 10¹⁴ yr , Ee≧498keV)
possible BG due to correlated coincidence by radiative Bremsstrahlung

<u>Goal</u>

- 1. Good energy resolution : 10%(FWHM)
- Fine segmentation (10⁴-10⁵)
 High efficiency γ detection
- Aspen Winter Workshop--New Directions in Neutrino Physics

Semi-insulating InP detector

mounted in vacuum dewar

- Semi-insulating InP VCZ substrate by Sumitomo Electric Industrials
- Assembled by Hamamatsu Photonics
- Operation at -79degree

11mm squere

- evaporated Au/Cr base metal
- Insulator (SiN) to avoid leak current

Aspen Winter Workshop--New Directions in Neutrino Physics

SiN(0.18µm)

InP(200μm)

Cr-Au (0. 03-1. 0µm)

Au-Ge/Ni/Au

 $(0.13/0.16/0.5\mu m)$

Gamma ray spectrum observed by InP

Measured clear photo-peak induced charge collection $(L_{ed} \sim 200 \mu m L_{he} \sim$ 30µm) Energy of electronhole pair production :3.5eV Energy resolution : 25%@122keV

IPNOS phase-I experiment for low energy

solar v experiment

InP multi-pixel detector inside of Liquid Xenon (LXe) with PMTs

30cm cubic chamber (like XMASS 100kg prototype) includes ~10kg InP detector

~10³ modules will be needed in the final IPNOS (~10ton InP)

Need larger area InP detector

Aspen Winter Workshop--New Directions in Neutrino Physics

Feb 4th, 2013

Development of LXe chamber for IPNOS phase-I proto-type

24cc Liquid Xenon (LXe) in inner chamber 4 InP detectors mounted inside of LXe PMT (used for XMASS) detects sci. light from gammas

Cooling test of Liquid Xenon chamber

New InP crystal (low etch pit density)

JX

2116

2946

2365

2656

20913

9627

7801

5643

5477

6805

4149 5975

DF area:0%

通常品EPDマップ

EPD related to Lattice Defect which generates significant dark current

DF サンプル品EPDマップ

DF area:72%

JX Nippon Mining & Metals Corporation

Do not duplicate. JX Nippon Mining & Metals confidential and proprietary.

Feb 4th, 2013

Zirconium Complex in Organic liquid Scintillator (ZICOS) for double beta decay experiment

Neutrinoless double beta decay

$[T_{1/2}^{0\nu}(0^+ -> 0^+)]^{-1} = G_{0\nu}(E_0,Z)|M_{0\nu}|^2 < m_{\nu}>^2$ T_{1/2}~a(Mt/\DeltaEB) a: abundance M: mass t: meas.time \DeltaE: energy res. B: BG rate Requirement : Low BG, Large target mass, High energy resolution

For future experiments

http://kds.kek.jp/getFile.py/access?contribId=37&sessionId=16&resId=2&materialId=slides&confId=9151

~tons of target will be needed for next generation detector

Studied isotopes

Piquemal@v2012

Neutrinoless double beta decay using

liquid scintillator

Experimental limits for neutrino mass

Requirement for <m,>:50~100meV high energy resolution 4%@2.5MeV Iow background rate 0.01 count kg⁻¹ y⁻¹ ton scale of target

Liq. Scintillator is easy to scale up target mass

Detector concept design

Spherical structure (Zr loaded 100ton LS)

Assuming 10w.t.% solubility

10m

What's problem

Absorption spectra of In(acac)₃ (indium acetyl acetone) was overlapped with the emission spectra from Anisole (Chem. Phys. Lett., 435(2007), 252)

Same overlap of the emission and the absorption spectrum would be occurred even if different metal (Zr) was used.

Scontillation Light yield (⁶⁰Co) with respect to concentration of Zr(acac)₄

concentration of Zr(acac) ₄	Observed channel	Expected channel
0 mg	3850	3850
50mg (1.03X10 ⁻⁴)	3175	3138
100mg (2.05X10 ⁻⁴)	2800	2651
200mg (4.10X10 ⁻⁴)	2000	2018
300mg (6.15X10 ⁻⁴)	1600	1613
500mg (1.03X10 ⁻³)	900	1178

PPO 100ma : 4.52X10⁻⁴

Aspen Winter Workshop--New Directions in Neutrino Physics

mol

Zr β-keto ester complex Zr(iprac)₄+(iprac)_{1.5} state: powder

Zr(etac)₄ state : dry solid

Synthesized by Prof. Takahiro Gunji (Tokyo University of Science)

Solubility > 10 w.t.% for anisole

Absorption spectra

Overlap with emission peak

Absorption peak of ketoester complex

No overlap between emission and absorption

Development for new LS for IPNOS phase-II

 Liquid Scintillator containing indium βketo ester complex

Advantages

- Easy to scale up for 10ton In in 100ton LS
- Possible same design as ZICOS
- Low energy solar v

 pp/⁷Be and CNO v
 Modulation using ⁷Be v

 Supernova v burst

 v_e burst form Neutralization

ve from Neutralization burst

ν-nucleus σ

Rhy.Rev.C53(1996)1409

¹¹⁵In has ~10⁻³⁹ cm² for 20-100MeV
 compared with σ_{vee}~10⁻⁴³ cm²
 Sensitive to neutralization burst

100ton of In detects 20-100 ev

Nuclear synthesis (r-process)

v mass hierarchy

Summary

InP detector for IPNOS phase-I needs more larger area to reduce the number of channel. new substrate will solve them. High solubility of Zr β-keto ester in Anisole (>~10w.t.%) for ZICOS detector was achieved. Confirmed absorption peak of beta-keto ester complex moves to shorter wavelength (275nm \rightarrow no overlap with emission spectra 245nm). from anisole. Indium β-keto ester complex will be developed for **IPNOS** phase-II to measure both low energy solar neutrinos and supernova neutralization burst.