

PINGU - Resolving the Neutrino Mass Hierarchy at the South Pole

D. Jason Koskinen for the IceCube collaboration koskinen@psu.edu

ICECUBE

New Directions in Neutrino Physics Aspen Center for Physics February 2013

- Precision IceCube Next Generation Upgrade (PINGU)
- Physics goals
- Drive neutrino energy reach down to few GeV at multi-megaton scale size by infilling IceCube/DeepCore
- South Pole is an attractive option for a GeV-scale energy neutrino detector

- Physics/Detector
 Hierarchy
 Challenges

Physics/Detector Hierarchy Challenges

 Enhance/extend ongoing oscillation analyses - see E. Resconi

Physics/Detector
Hierarchy
Challenges

- Enhance/extend ongoing oscillation analyses - see E. Resconi
- GeV Dark Matter see C. Rott

- Enhance/extend ongoing oscillation analyses - see E. Resconi
- GeV Dark Matter see C. Rott
- θ₂₃ maximal mixing (end of talk)

- Enhance/extend ongoing oscillation analyses - see E. Resconi
- GeV Dark Matter see C. Rott
- θ₂₃ maximal mixing (end of talk)

Neutrino Hierarchy

South Pole Neutrino Overview

- Free/cheap stuff is the best stuff
 - Atmospheric neutrino "beam" covers all baselines up to 12,700km and a large energy region (MeV - TeV+)
 - More clear ice than you can shake a stick at, just needs instrumentation
 - Gigaton veto (IceTop/IceCube/DeepCore) already built and operational

- Additional strings within IceCube/DeepCore volume
 - Number of strings, stringstring spacing, DOM-DOM spacing, etc... under investigation
 - 10 different simulated geometries already
- Shorter DOM-DOM spacing than DeepCore
- R & D for future water/ice cerenkov detectors
- 1.5 year procurement/ shipping + 2-3 year deployment

- Additional strings within IceCube/DeepCore volume
 - Number of strings, stringstring spacing, DOM-DOM spacing, etc... under investigation
 - 10 different simulated geometries already
- Shorter DOM-DOM spacing than DeepCore
- R & D for future water/ice cerenkov detectors
- 1.5 year procurement/ shipping + 2-3 year deployment

- Additional strings within IceCube/DeepCore volume
 - Number of strings, stringstring spacing, DOM-DOM spacing, etc... under investigation
 - 10 different simulated geometries already
- Shorter DOM-DOM spacing than DeepCore
- R & D for future water/ice cerenkov detectors
- 1.5 year procurement/ shipping + 2-3 year deployment

- Additional strings within IceCube/DeepCore volume
 - Number of strings, stringstring spacing, DOM-DOM spacing, etc... under investigation
 - 10 different simulated geometries already
- Shorter DOM-DOM spacing than DeepCore
- R & D for future water/ice cerenkov detectors
- 1.5 year procurement/ shipping + 2-3 year deployment

All following plots use V6 Geometry

V6 = 20 strings w/ 60 DOMs/string @ 26m string-string spacing, 5m DOM-DOM

Event Movies

- Physics/Detector
- Hierarchy
- Challenges

 9.28 GeV Neutrino, 4.9 GeV muon, 4.5 GeV cascade

DeepCore Only

Event Movies

- Physics/Detector
- Hierarchy
- Challenges

- Physics/Detector
- Hierarchy
- Challenges

Resolving the Mass Hierarchy

7

- Physics/Detector Hierarchy
- Challenges

Resolving the Mass Hierarchy

- Physics/Detector Hierarchy Challenges

Matter Effects & Neutrino Hierarchy

- Physics/Detector
 Hierarchy
 Challenges

Matter Effects & Neutrino Hierarchy

- Physics/Detector Hierarchy
- Challenges

• Inverted/Normal hierarchy has up to a 20% difference in v_{μ} oscillation probability for specific energies and zenith angles (baselines)

Matter Effects & Neutrino Hierarchy

- Physics/Detector Hierarchy
- Challenges

• Inverted/Normal hierarchy has up to a 20% difference in v_{μ} oscillation probability for specific energies and zenith angles (baselines)

Hierarchy Distinguishability Metric

Use method outlined in Akhmedov, Razzaque, Smirnov - arXiv:1205.7071

$$S_{tot} = \sqrt{\sum_{ij} \frac{(N_{ij}^{IH} - N_{ij}^{NH})^2}{N_{ij}^{NH}}} \qquad \begin{array}{ll} i = \cos(\text{zenith}) \\ j = \text{energy} \\ V^{eff} = effective \, \text{volume} \end{array}$$

$$N_{i,j}^{NH} = P(\nu_{\mu})_{i,j}^{NH} * \Phi(\nu_{\mu})_{i,j} * \sigma(\nu_{\mu})_{j} * V_{i,j}^{eff} + P^{NH}(\overline{\nu_{\mu}})_{ij} * \Phi(\overline{\nu_{\mu}})_{i,j} * \sigma(\overline{\nu_{\mu}})_{j} * V_{i,j}^{eff}$$

• Essentially bin, sum, and subtract one hierarchy from the other. It works because:

$$\begin{aligned} Probability &: P(\nu_{\mu})^{IH} + P(\overline{\nu_{\mu}})^{IH} \neq P(\nu_{\mu})^{NH} + P(\overline{\nu_{\mu}})^{NH} \\ Flux &: \Phi(\nu_{\mu}) > \Phi(\overline{\nu_{\mu}}) \\ Cross-Section &: \sigma(\nu_{\mu}) > \sigma(\overline{\nu_{\mu}}) \end{aligned}$$

Hierarchy

- Physics/Detector
- Hierarchy
- Challenges

- Idealized case w/ perfect event ID, 100% event selection efficiency, no quality cuts and no background
- Detector response (ice modeling, DOM efficiency) may play a major role in final sensitivity
- Evaluations of angular and energy resolution are ongoing

Hierarchy

- Physics/DetectorHierarchy
- Challenges

- Physics/Detector
 Hierarchy
 Challenges
- There are benchmarks that relate hierarchy distinguishability to reconstruction uncertainties
 - A cut on 20 hits represents a reconstruction efficiency
 - Provide targets for ongoing reconstruction effort

Distinguishability PINGU 26m spacing - 1 Year Data Taking, 20 Hit Cut

11

Physics Challenges

- Physics/Detector Hierarchy Challenges
- Uncertainty in global Δm_{31}^2 creates some degeneracy in the distinguishability metric
 - Plots have perfect event ID and 100% selection efficiency, but include energy and angle smearing

PINGU

Time to Distinguishing

- Physics/Detector
 Hierarchy
 Challenges
- The statistical power of PINGU makes systematics a critical factor sooner rather than later for hierarchy
 - PINGU specific angular reco, energy reco, ice modeling...
 - Neutrino field at large MC neutrino generators, cross-sections, atmospheric flux...

Distinguishability with Time

V6 Geometry

Leaving Feasible and Moving on to Ambitious

θ₂₃ Maximal? Octant?

- Instead of fitting $\sin^2 2\theta_{23}$ fit $\sin \theta_{23}$
- Requires lots and lots of events

0.75

0.80

- Plots below are 10 years of DeepCore exposure w/ ambitious reco assumptions
- But, the requirements are similar to what is necessary for resolving the hierarchy in PINGU

0.65

0.70

 $\sin\theta_{23}$

2.60

2.55

2.50

2.45

2.40 0.60

 $\Delta m_{13}^2 \times 10^{-3} eV^2$

15

PINGU Maximal Mixing

- Precision of atm. oscillation fit parameters will improve drastically the more minima/maxima can be resolved
- Trigger efficiency is much higher at lower energies for PINGU versus DeepCore
- PINGU/DeepCore covers all zeniths (baselines), while the oscillation minimum is at ~25 GeV @12700km, the minimum shifts to lower energies for decreasing baselines

 $sin^{2}(2\theta_{13})=0.1$

PINGU Maximal Mixing

- Precision of atm. oscillation fit parameters will improve drastically the more minima/maxima can be resolved
- Trigger efficiency is much higher at lower energies for PINGU versus DeepCore
- PINGU/DeepCore covers all zeniths (baselines), while the oscillation minimum is at ~25 GeV @12700km, the minimum shifts to lower energies for decreasing baselines

Leaving Ambitious and Moving onto...

Leaving Ambitious and Moving onto...

Beam?

Julius-Maximilians-UNIVERSITÄT Upgrade path towards δ_{CP} ? WÜRZBURG Measurement of δ_{CP} in principle possible, but challenging $1\sigma 2\sigma 3\sigma$ -25 1σ Requires: Electromagnetic SB_{bm}^* shower ID $SB_{ref}^* = LBNE +$ same beam (here: 1% mis-ID) Project X! to PINGU cp[Degree] -75Energy resolution (here: 20% x E) Maybe: volume -100upgrade (here: ~ factor two) -125Project X Performance and -150optimization of SB PINGU, and -175possible upgrades 0.02 0.03 0.04 0.05 0.06 0.07 0.08(MICA, ...) require $\sin^2 2\theta_{13}$ further study (Tang, Winter, JHEP 1202 (2012) 028)

D. Jason Koskinen - New Directions in Neutrino Physics - Feb, 2013

15

Future

- PINGU and MICA physics portfolio makes us of natural neutrino sources. Adding a beam will strengthen the diversity.
- Beam construction more of a headache than detector
 - 11620 baseline has a tilt angle of 65.8° from FNAL (similar for CERN)
 - Hydraulic fracturing drills *may* provide help

'Frakking'

Graphic by Al Granberg

'Frakking'

Future

- PINGU and MICA physics portfolio makes us of natural neutrino sources. Adding a beam will strengthen the diversity.
- Beam construction more of a headache than detector
 - 11620 baseline has a tilt angle of 65.8° from FNAL (similar for CERN)
 - Hydraulic fracturing drills *may* provide help
- Melting ice is cheaper than excavating rock
 - Going bigger underground gets non-linearly expensive for civil construction (in a bad way)
 - Whereas, the difficulty of in-ice deployment is going smaller

PINGU Advantages

- Relatively quick, cost effective, huge and unique
 - 2-3 season deployment w/ additional ~1.5 year procurement/shipping
 - ~10M\$ start up and ~1.25M\$/string based on IceCube experience
 - Megaton size at GeV energies
 - Samples many angle, many baselines and crosses the earth core
- Enhance on-going DeepCore physics
 - muon disappearance
 - tau appearance
- Gains sensitivity to additional neutrino oscillation features
 - 2nd oscillation minima/maxima
 - Maximal θ_{23}
 - Neutrino hierarchy over all possible values of δ_{cp}
 - Maximal mixing and beam option

PINGU Advantages

- Relatively quick, cost effective, huge and unique
 - 2-3 season deployment w/ additional ~1.5 year procurement/shipping
 - ~10M\$ start up and ~1.25M\$/string based on IceCube experience
 - Megaton size at GeV energies
 - Samples many angle, many baselines and crosses the earth core
- Enhance on-going DeepCore physics
 - muon disappearance
 - tau appearance
- Gains sensitivity to additional neutrino oscillation features
 - 2nd oscillation minima/maxima
 - Maximal θ_{23}

- δr Neutrino hierarchy over all possible values of δ_{cp}
 - Maximal mixing and beam option

- Physics/Detector Hierarchy Challenges

Backup

- Physics/Detector
 Hierarchy
 Challenges
- Qualitative comparison of DeepCore to PINGU energy region

PREM Model

- Physics/Detector
 Hierarchy
 Challenges
- Change the earth layers within the PREM model radii +5%
- Distinguishability is largely unaffected by PREM model uncertainty

Physics/Detector Challenges

- Physics/Detector
- Hierarchy

14

12

10

14

12

10

Challenges

- Event selection and analysis techniques can be used to reduce the degeneracy
 - Optimize for inelastic event selection
 - Likelihood analysis instead of a chi-squared like test

Cos(zenith angle)

1.5

0.5

-0.5

·1.5

1.5

0.5

-0.5

-1.5

Cos(zenith angle)

Calibration

- In-situ cameras show that refrozen hole ice has a central column of 'cloudy' ice
- Degassing filters can be included on the hot water drill to reduce the addition of bubbles

