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Topics of this talk:

® Sterile neutrinos and the reactor neutrino anomaly
e Difficulties in current analysis techniques

® Describe a 2-reactor |-detector analysis technique

that provides a new approach to searching for sterile
neutrinos

® Case Study: apply technique to Double Chooz near
detector
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What is the reactor anti-neutrino

In 201 I, re-evaluation of reactor anti-neutrino spectra because

anomaly?

(a) 3% increased flux of antineutrinos relative to the previous calculations

(b) experimental neutron lifetime value significantly lower

Previously published experimental result with L< 100 m now show a disappearance
not consistent with 0,3, but that could be due to a sterile neutrino oscillation

The current reactor experiments probe regions of Am? > 0.3 eV?
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Sterile neutrino allowed mixing parameters
for RNA

The rate has a best fit value of (Sin2(20new), dM?2) = (0.12, 0.5 eV?2).The best fit value is
ruled out by shape constraint. New best fit value: (Sin2(28new), dmM2) = (0.12, 2 eV?)
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FIG. 2. 90% C.L. exclusion domains obtalned in the Am’.
sin“(29) plane from a raster scan of Bugey-3's data. Our
result (comtinuoss line) is in good agreement with the original

Rpee 35, Allowed regions s 8¢ sia (08, ) - Amg_ plane cbeained from the £2 of the mactor neutrino
duta. without any energy spooua information, 10 the 3+ pewtrino hypothesis, with o (28,,) = 0. The

best-0t powe Is indicaned by a st Y 3 ’ 3 1
result from |4 (dashed line), excluding oscillations such that
008 < &m® < | oV for sin’(29) > 0,05
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. Figure 60. Allowed regions in the sin®(28,..)-Am?, plane from the combination of reactor neutrino
aerV: 1204 .5379 experiments, the Gallex and Sage calibration sources experiments, and the ILL and Bugey-3-cnergy spectra.
The data are well fitted by the 3+ 1 neutrino hypothesis, while the no-oscillation hypothesis is disfavored at

997% CL(360)
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Future Experiments to measure L/E
oscillation
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Traditional way of looking at a reactor-
detector relationship:

Daya Bay
6 2.9 GWth reactors Double Chooz Configuration:
6 detectors . Two 4.25 GWth reactors (1,2 for this talk)
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Why the |-reactor multi-detector sterile
neutrino rate or shape analysis is difficult:

® A traditional rate analysis of the neutrino spectra at each detector may not be sufficient
to detect a higher Am?4 due to systematic uncertainties in the absolute rate

® The detector resolution will wash out the large Am? such that the sin?(204)
term will average out to |/2 for a shape analysis

® |n addition, distances implied are on the order of the core size which will also wash it
out the oscillation feature in a shape analysis
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Traditional way of looking at a reactor-
detector relationship (DC case study)

Double Chooz:
- Two 4.25 GWth Reactors
(1,2 for this talk)
- 2 Detectors (Near, Far)

LI

L2

In 2-reactor 2-detector set-up, it is
customary to think of an “average” reactor
and multiple detector scenario (“‘1”=-
reactor 2-detector)

In the rare case when both reactors are

off, gain better understanding of detector when both reactors are on,
. 9 : we cannot tell from which reactor
related S)’Stematlcs ( Ll, FN) the anti-neutrinos are originating

It is fairly common for one reactor
to be on while the other is off. In
the case of DG, it is 30% of the

time
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New idea of the reactor-detector
relationship for a Shape-Only analysis:

Do not have the two reactor running at
the same time (luckily, we don’t have to
convince anyone, this happens naturally)

Collect data when Reactor | is on and
Reactor 2 off and vice versa

One can then think of a near and far
reactor

Do a ratio of the energy spectra corrected
for livetime and distance for near and far
reactor:

This can be used in a shape analysis that
does not depend on rate
information

In a shape only analysis, major detector related systematics (fast neutrons, 9Li
production, ...) can be constrained
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A quantitative case study : DC Near detector

Assumption for this analysis:

~274 days of data per Reactor assuming

down cycle of 15% per Reactor.This implies G\@
5 years total of detector operation

Reactor |-Near detector :
- 35| meters away from DC Ndetector
- ~460 anti-neutrinos per day
N
Reactor 2-Near detector :
- 465 meters away from detector

- ~260 anti-neutrinos per day Only works with 2 “identical”

reactors

Do a ratio of the energy spectra corrected for livetime
and distance for near and far reactor!
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Understanding the shape from the ratio of
the oscillated spectra:

2 . T :
P.. =1 —gin? (201ew) qin? (AmnewL) ratio + simplify - Pk _I= a?sin?(BL,)
A4F;. PR 1 —a2sin®(BL,)
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Understanding the shape from the ratio of
the oscillated spectra:

2 . . :
Poei- Sin2(29new) qin2 (AmnewL) ratio + simplify - PL’}; = a?sin?(BL,)
4FE;. B2 1 — o2sin®(BL,)

do some math

PR 1+ a?sin(BLa—1)sin (BL1+2) — asin®(BL;) sin?(BLo)
pE 1 — asin®(8Ls)

identify 4 baselines

Doing a ratio of two distribution yields an (@) L) = distance from detector to reactor 1
interference term with a behavior ~ sin(y/E) (b) L, = distance from detector to reactor 2
function (and not as the square of a sin function) (¢) Ly_y=Ly—1L,

@) Fus=Evtil;
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Understanding the shape from the ratio of
the oscillated spectra:

2 . T :
Pl Sin2(29new) qin? (AmnewL) ratio + simplify - PR 1 —a?sin®(BL,)

R 1 — a2sin?(BL,)
do some math

PR 1+ a?sin(BLa—1)sin (BL1+2) — asin®(BL;) sin?(BLo)

pE 1 — asin®(8Ls)
identify 4 baselines
Doing a ratio of two distribution yields an (@) L) = distance from detector to reactor 1
interference term with a behavior ~ sin(y/E) (b) L, = distance from detector to reactor 2
function (and not as the square of a sin function) (¢) Ly_y=Ly—1L,
¢ i S s

When & is small, the expression simplifies there is 3 important baselines

R,
i + [1 — o*sin®*(BLy)] [o®sin (BLy—1)sin (BL142)] + O(6) + ...

Ro
ee

Interference terms depend on sin and not sin?
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What can be probed with these baselines!?

Y+ 0(6) + ...

Baselines probed by ratio analysis
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How is this ratio observed in a detector?

® Convolve 4th neutrino with 3-neutrino oscillation
® Make appropriate livetime, core evolution and distance corrections

® Finally, convolve with detector energy resolution and finite core size

Expected spectra after applying oscillation and core evolution
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How does this ratio change as a function

of Am??
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Figure 58. Allowed regions in the sin’(28.) =

best-fit point is indicated by a star.
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At even lower Am? the detector

resolution has less o

f

an impact
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Uncertainties

Shape Uncertainties in ratio :

Reactor

-Full loading < 0.01%
-Reactor core size of 3.47 meter

Shape Uncertainties in ratio:

Detector

-resolution used (7 +/- 1)%
-energy scale stability ~1%

Some Experimental Issues
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Results for this case study: exclusion
domain with 5 year of near detector
operation + shape systematics

Raster scan
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To Do:

® Add rate constraint with appropriate systematics
® Optimize position for new experiment to probe higher Am?

® Optimize binning strategy for different Am? domain
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Conclusions

® The DC near detector experiment is being built (no cost) and offers sensitivity in a region
of phase space not explored before

® Formalism developed can be applicable for different experimental sites. Braidwood is a
good example, 2 identical cores separated by ~100 m

® The choice of the location of the detector is paramount: L2 and L+ should be optimized
for specific detector set-up: for example with L;.2=10~15 meters, the ILL region might
be probed by the interference terms, however core fission mapping needs to be
implemented to assess the effect of core washing out
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Backup: Sensitivity map
Going in a unexplored region
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