

Talk Outline

- •Sensors and set-up
- Pre irradiation measurement
- •Radiation hardness study up to 3,5 10^{15} 1 MeV n eq./cm²
- •Conclusion and plans

Radiation hardness study made by the SMART collaboration CCE measurement performed by the Pisa Team: J.Bernardini, L.Borrello, F. Fiori, A. Messineo

SMART : Wafer layout, 4" Pad detector Test2 Edge structures Test1 Square MG-diodes ✓ RD50 common wafers 8 Microstrip_ procurement ✓ Wafer Layout designed 8 detectors by **SMART** collaboration ✓ Masks and process by **ITC-IRST (Trento)** Inter strip Capacitance test Round MG-diodes **MCz Samples MCz Samples** <100> ρ >1.8 k Ω *cm thickn.=300 μ m RUN II n-on-p RUN I p-on-n <100> ρ>500 Ω*cm thickn.=300µm **Fz Samples** $<100>\rho>5$ k Ω *cm thickn.=200 µm 22 wafers Fz. 24 wafers Fz. Fz Samples <111> ρ >6 k Ω *cm thickn.=300 μ m \checkmark Low dose p-spray (3.0E12 cm⁻²) MCz, Cz, Epi MCz **Epitaxial Samples** \checkmark High dose p-spray (5.0E12 cm⁻²) March 04 September 04 <100> ρ>500 Ω*cm thickn.=150µm

CERN November 12, 2007

Sensors design features

Mini-sensor active area ~0.32 x 4.5 cm²

- a) Pitches 50, 100 µm to match active thickness (EPI) and for a low occupancy level
- b) Strips length ~45 mm to exploit tracking detector performances (noise)
- c) Implants geometry to investigate leakage current level, breakdown performances and strip capacitance effects

			1	A States and A sta
µ-strip#	pitch (µm)	p+ width (µm)	Poly width (µm)	Metal width (µm)
S1	50	15	10	23
S2	50	20	15	28
S 3	50	25	20	33
S4	50	15	10	19
S 5	50	15	10	27
S6	100	15	10	23
S7	100	25	20	33
S8	100	35	30	43
S9	100	25	20	37
S10	100	25	20	41

Main goal : to study Material (Fz (n,p) MCz (n,p) Epi(n) and device processing

Irradiation campaigns

Source: 24 Gev/c protons at CERN SPS

3 fluences: 6.0x10¹³ 3.0x10¹⁴ 3.4x10¹⁵ n_{ed}/cm²

27 mini-sensors, 90 diodes

75 % n-type, 25 % p-type (MCz, SFZ)

Thanks to M. Glaser, M. Moll,...

Source: 26 MeV protons at the

Cyclotron of the Forschungszentrum Karlsruhe

11 fluences: 1.4x10¹³ - 2.0x10¹⁵ n_{ed}/cm²

62 mini-sensors, 100 diodes

38 % n-type, 62 % p-type (MCz, SFZ)

Thanks to A. Furgeri

Source : fast neutron from Lijubliana Nuclear reactor 12 fluences: $5.5 \times 10^{13} - 8.5 \times 10^{15} n_{eq}/cm^2$

27 mini-sensors, 11 test structure (capts),100 diodes

60 % n-type, 40 % p-type, Fz, MCz, Epi

Thanks to V.Cindro and G.Kramberger

CERN November 12, 2007

A.Messineo: 11th RD50 Workshop

Irradiation set-up at CERN SPS

Irradiation set-up at FZK(Karlsruhe)

Irradiation set-up at JSI(Ljubljana)

Fluence and Investigated Sample

Fluence axpected for 5 years SLHC (X 2 s. f.)

Test stand with Laser and β source

Detectors and F.E are cooled with N_2 cold gas extracted from liquid with a pump Temperature range [20 °C to -50 °C]. Standard DAQ operation for irradiated detectors at T=-30 °C

CERN November 12, 2007

CERN November 12, 2007

Module operation

- 6 modules assembled: 4 to 7 micro-strips/module
 - n-type and p-type
 - Fz , MCz and Epitaxial
- CMS F.E. (APV25) has feature (Inverter) to read signal from both sources (e-, h)
 - Analog operation with no loss in integration dynamical range
 - Peak mode operation
- Performance Bench mark with CMS TIB detector (before/after irradiation)
- Same clustering and analysis for irradiated and not irradiated devices
 - 3 threshold clustering: 4 seed, 3 neigh. and 5 total
- Operation
 - Bias up to 600 V, compatibility with present CMS p.s.
 - Measurement performed up to the highest bias allowed

Reference detector (CMS-TIB): S & S/N

•All studies shown are in Peak Mode smaller noise compared to De-convolution signal sampled each 25 ns (40 MHz speed)

TIB Module : Pitch 80 um length 9,4 cm S ~ 34 N ~ 1.26 S/N ~ 27

CERN November 12, 2007

Set-up has been validated : CM 1)comparing noise performance with theory 2)evaluating electron eq./ADC calibration A.Messineo: 11 th RD50 Workshop

Fz(n, 300 um) Reference micro-strips:

Raw Noise figure with 0 V bias applied Module with 6 APV used Micro-strips sensors: 32 or 64 strips

Fz(n, 300 um) Reference micro-strips: S & S/N

Measurement performed at 25 deg C Signal extracted with (Landau \otimes gauss) fit

Device	Туре	w/p	p(um)	Vbias (V)	S	S/N
1255-s4	Fz-n (300 um)	0,3	50	250	32,2	34,1
1255-s5	Fz-n (300 um)	0,3	50	200	35,8	33,5
1255-s6	Fz-n (300 um)	0,25	100	200	37,6	36
1255-s7	Fz-n (300 um)	0,15	100	200	34,3	34,4

Performance comparable with CMS-TIB detector After correction for: •<111> to <100> •Strip length •Wafer thickness

CERN November 12, 2007

Fz(n, 300 um) Reference micro-strips: Voltage Bias scan

MCz(n, 300 um) Reference micro-strips: 5 & 5/N

Device	Туре	w/p	p(um)	Vbias (V)	S	S/N
130-s5	MCz-n (300um)	0,25	100	600	32,76	36
160-s7	MCz-n (300um)	0,3	50	600	33,41	38,7

Bulk depletion from diodes CV: (130) 399-497V (160) 370-414 V

80

cluster charge

676

39.29

13.91

0.3838

379.7 ± 23.8

 $\textbf{33.67} \pm \textbf{0.30}$ $\textbf{3.373} \pm \textbf{0.173}$

100

Performance of MCz-n comparable to Fz-n

Epi(n, 150 um) Reference micro-strips: 5 & S/N

Performance similar to Fz-n Noise a bit higher: maybe strip Capacitive load

Fz(p, 200 um) Reference micro-strips: 5 & S/N

Device	Туре	w/p	p(um)	Vbias (V)	S	S/N
14-s7	Fz-p (200 um)	0,25	100	250	22,3	23,1

Bulk depletion voltage from diodes CV ~75V

Signal scales with thickness Performance similar to Fz-n

MCz(p, 300 um) Reference micro-strips: 5 & S/N

Device	Туре	w/p	p(um)	Vbias (V)	S	S/N
66-s7	MCz-p (300 um)	0,25	100	250	33,2	34,3

Bulk depletion voltage from diodes CV ~100V

Performance similar to Fz-p (n)

Measurements after irradiation

Micro-strips irradiated

device	□ 1 MeV n eq/cm ²	irrad-facility	wafer type
12-s9	4,20E+14	karlsruhe	Epi-n
12-s5	7,00E+14	karlsruhe	Epi-n
12-s4	2,55E+15	ljubljana	Epi-n
12-s10	3,50E+15	karlsruhe	Epi-n
24-s2 lps	8,50E+14	ljubljana	Fz-p
127-s8	4,20E+14	karlsruhe	MCz-n
127-s9	5,53E+14	karlsruhe	MCz-n
160-s4	7,00E+14	karlsruhe	MCz-n
127-s4	1,70E+15	ljubljana	MCz-n
102_s4 lps	1,23E+14	karlsruhe	MCz-p
130-s7 hps	2,71E+14	karlsruhe	MCz-p
102-s2 lps	4,13E+14	karlsruhe	MCz-p
9-s9 lps	5,53E+14	karlsruhe	MCz-p
66_s4 lps	7,00E+14	karlsruhe	MCz-p
253-s10 hps	3,50E+15	karlsruhe	MCz-p

Fluence correction
1)Source hardness Factor
2)Diode study of annealing
 fit to expected α

Micro-strips have different
annealing time
< 30 min. @ 80 deg C
(far from annealing induced
Type inversion)</pre>

CERN November 12, 2007

I_{leak} performance of proton irr. microstrip sensors

- IV curves of *n*-type detectors for the full fluence range before annealing (measured at 0°C):
- Current levels in MCz detectors are comparable with Fz at a given fluence
- Leakage currents measured at V_{depl} scale as the received fluences.

- The performance of p-type Fz and MCz .detectors are much improved after irradiation
 - Sensors with low p-spray have IV performance comparable with n-type detectors.
 - Detectors with a high p-spray show improved IV performance at fluence > 4.0 10¹⁴ n_{ed}/cm²

Similar effect of damage on reverse current on all materials Fz , MCp Epi

CERN November 12, 2007

Epitaxial devices irradiated with 26 MeV protons

✓ The annealing curves suggest that the SCSI takes place around 50 minutes at 80°C except for the lower fluence → confirmed by TCT measurements.

✓ Pulse shape measured (red) and predicted (blue) from the field distribution extracted from the fit: Φ= 7.1x10¹⁴ n_{eq} cm⁻².

V_{dep} vs Annealing Time

✓ The 150 µm epitaxial samples show a typeinverted behaviour after neutron irradiation (already at the lowest fluence analysed 8.5×10^{14} n_{eq} cm⁻²)

✓ Before annealing the dominant junction is still on the front side with a wide neutral base on the back.

✓ After a long reversal annealing the dominant junction has moved from the front to the back side.

Inter-strip Capacitance after proton irradiation

Devices simulation results (ITC-IRST) have shown good agreement with data: step forward in understanding strips geometry & isolation scheme

CERN November 12, 2007

Summary: S/N for irradiated SMART micro-strips detectors

S/N

CERN November 12, 2007

Summary: CCE for irradiated SMART micro-strips detectors

Summary: Collected signal for irradiated SMART micro-strips detectors

Signal (electrons)

At S/N=10 we collect 8000-9000 electrons

Micro-strip signal compared to pad

CERN November 12, 2007

- Micro-strips performances investigated up to 3,5 10¹⁵ 1 MeV n eq.
- S and S/N :
 - MCz(n/p,300 um):
 - n-type cannot be used at high fluence (signal disappear and clustering efficiency strongly decrease), maybe performances enhanced in the medium fluence range by D.J. effect
 - · p-type have acceptable performance up to a few 10^{15}
 - Epitaxial(n,150 um) moderate decrease with fluence
 - Fz(p, 200um) seems competitive (more measurement needed)
- S/N for MCz(300,p) and Fz(200,p) is in agreement with simulation, and compatible pad CCE measurements
- Safe detector operation limit (S/N=10) up to ϕ =3,1 10¹⁵ 1 MeV n eq./cm² for MCz(p) (fluence expected for ~9 cm at SLHC)

Future plans

- Assembly of new modules with SMART sensors to have :
 - More fluence points
 - Cross check of results
- Analysis of performance vs Vdepl, quantitative comparison with diodes
- Study of optimized clustering after high level irradiation
- Assembly of new sensors from 6 inch and 4 inch production with improved design and process.
- Study of power detector stability
 - Increase of detector CM noise
 - Run away and early breakdown effects
 - Optimization of cooling