

ATLAS Inner Detector Upgrade for SLHC

Hartmut F.-W. Sadrozinski SCIPP, UC Santa Cruz

- **Proposed Tracker Layout and Simulations** (Radiation and Occupancy)
- Sensor and FE Electronics R&D
- Microstrip Module and Engineering Concepts
- Power, DCS, Opto-electronics, Services, Cooling, ...

Upgrading ATLAS for the sLHC

Trigger Electronics:

- Most front-end electronics can probably stay but need faster clock speed and deeper pipelines
- Extensions to trigger capability required
- Need to maintain L1 output rate (more data per event)
 - Must upgrade detector backend electronics
 - increase bandwidth to deal with more data per event
 - Modify trigger algorithms to deal with high occupancy (and increase thresholds)

<u>L-Ar:</u>

- Performance degradation due to high rates in EndCap.
- (High ionisation gives big voltage drops, electronic is inaccessible, L-Ar boiling!)

TileCal:

- Some radiation damage of scintillators
- Challenging calibration with strong increase in pile-up

Muon systems:

- Degradation in performance due to high rates, in particular in the forward regions:
 - Will need additional shielding for forward region
 - May need beryllium beampipe
 - Aging/radiation damage needs confirmation for SLHC operation
- Huge expense and disruption if chambers need replacement Inner Detector tracking systems:
- The entire Inner Detector will have to be rebuilt

ATLAS Inner Detector Replacement

To keep ATLAS running more than 10 years the inner tracker will have to go ... (Current tracker designed to survive up to 730 fb⁻¹ \approx 10Mrad in strip detectors) For the luminosity-upgrade the new tracker will have to cope with:

- much higher occupancy levels 3000 fb-1
- much higher dose rates ~ 300Mrad

To build a new tracker for 2015, major R&D program already needed. Steering group (lead Nigel Hessey) and several working groups. Formal proposal submittal structure.

Timescales:

- R&D leading into a full tracker Technical Design Report (TDR) in 2010
- Construction phase to start immediately TDR completed and approved.

The intermediate radius barrels are expected to consist of modules arranged in rows with common cooling, power, clocking and cooling. The TDR will require prototype super-modules/staves (complete module rows as an integrated structure) to be assembled and fully evaluated All components will need to demonstrate unprecedented radiation hardness

Current Inner Tracker Layout ID TDR SOLENOID COIL eta=1.5 CRYOSTAT eta=1.0 ipo_U 10 0.61% R1150 839 PPB1 2713 R1080 eta=2.0 R999 r=30cm TRT TRT CRYOSTAT RADIUS R635 eta=2.5 R559 R514 R560 R443 SCT (Endcap) R439 SCT (Barrel **B408** R371 R338 R299 Pixels: 1.8 m², ~80M channels Occupancy R270 R122.5 R150 **Mean Occupancy in** PIXEL SCT: 61 m², ~6.3M channels R88.5 **R89** R50.5 **Innermost Layer of** 0 746 **TRT straws:** ~400k channels 580 847.5 1084 1262 1747 2072 **Current SCT** 1377

Pixels (50 μ m × 400 μ m): 3 barrels, 2 × 3 disks

5cm < r < 15cm

- Pattern recognition in high occupancy region
- Impact parameter resolution (in 3d)

Radiation hard technology: n⁺-in-n Silicon technology, operated at -6° C

Strips (80 μ m × 12 cm) (small stereo angle): "SCT" 4 barrels, 2×9 disks

- pattern recognition
- momentum resolution
- p-strips in n-type silicon, operated at -7° C

TRT 4mm diameter straw drift tubes: **barrel** + **wheels**

- Additional pattern recognition by having many hits (~36)
- Standalone electron id. from transition radiation

New SLHC Layout Implications

Strawman 4+3+2

SCIPP

Radiation Levels

- With safety factor of two, need pixel b-layer to survive up to 10¹⁶n_{eq}/cm²
- Short microstrip layers to withstand 9×10¹⁴n_{eq}/cm² (50% neutrons)
- Outer layers up to 4×10¹⁴n_{eq}/cm² (and mostly neutrons)
 - → Issues of thermal management and shot noise. Silicon looks to need to be at ~ -25°C (depending on details of module design).
 - → High levels of activation will require careful consideration for access and maintenance.

Issues of coolant temperature, module design, sensor geometry, radiation length, etc etc all heavily interdependent.

1 MeV neutron equivalent fluence

Quarter slice through ATLAS inner tracker Region, with 5cm moderator lining calorimeters. Fluences obtained using FLUKA2006, assuming an integrated luminosity of 3000fb⁻¹.

- ATLAS considers to have a B-layer replacement after ~3 year of integrated full LHC luminosity (2012) and replace completely the Inner Tracker with a fully silicon version for SLHC (2016).
- The <u>B-layer replacement</u> can be seen as an intermediate step towards the full upgrade. Performance improvements for the detector (here some issues more related to FE chip):
 - **Reduce radius** \rightarrow Improve radiation hardness (\rightarrow 3D sensors, or possibly, thin planar detectors, diamond, gas, ...?)
 - Reduce pixel cell size and architecture related dead time (\rightarrow design FE for higher luminosity, use 0.13 µm 8 metal CMOS)
 - Reduce material budget of the b-layer (~3% $X_0 \rightarrow 2.0 \div 2.5\% X_0$)
 - increase the module live fraction (\rightarrow increase chip size, > 12×14 mm²) possibly use "active edge" technology for sensor.
 - Use faster R/O links, move MCC at the end of stave
- The <u>B-layer for the upgrade</u> will need radiation hardness $(10^{15} \rightarrow 10^{16} n_{eq}/cm^2)$ and cope with detector occupancies up to (× 15)

New Pixel FE-ASIC Design

Design of a new Front-End chip (FE-I4) is going on as a Collaborative Work of 5 Laboratories: Bonn, CPPM, Genova, LBNL, Nikhef

- FE-I4 tentative schedule
 - 9/2007: Architecture definition
 - 10/2007: Footprint frozen
 - 01/2008: Initial Design review
 - 12/2008: Final Design review
- Some prototype silicon made of small blocks and analog part of
- the pixel cell in 0.13 µm.
 bhu constrained a state of the pixel cells of the pixel

Main Parameter	Value	Unit
Pixel size	50 x 250	μm ²
Input	DC-coupled negative	
	polarity	
Normal pixel input	300Ö 5 00	fF
capacitance range	\frown	
In-time threshold (4000	e
with 20ns gate		
Two-hit time	400	ns
resolution		
DC leakage current	100	nA
tolerance		
Single channel ENC	300	e
sigma (400fF)		
Tuned threshold	100	e
dispersion		
Analog supply	10	μA
current/pixel		
@400fF		
Radiation tolerance	200	MRad
Acquisition mode	Data driven with time	
	stamp	
Time stamp	8	bits
precision		
Single chip data	160	Mb/s
output rate		

FE-I4 (B-layer Replacement) Specifications: main parameters

Hartmut F.-W. Sadrozinski, SCIPP RD50

Thin Sensors & Vertical (3D) Integration

- Work already underway in Germany and US
- UK has purchased RD50 wafers for trials adding polyimide layers to Micron sensors
- Survey of companies for MCMD in progress

- 1) Low I_leak, low V_dep
- 2) Large live-fraction
- 3) SLID interconnection
- 4) 3D integration

Strips: Efficiency vs. Collected Charge

- For tracking sensors with binary readout, the figure of merit is not the collected charge, but the efficiency.
- 100% efficiency is reached at a signal-to-noise ratio of S/N ≈ 10.
- For long strips (5e14 cm⁻²) with a signal of about 14ke, the usual threshold of 1fC = 6400 e can be used.
- For short strips (1e15 cm⁻²) with a signal of about 8ke, the threshold needs to be reduced to about 4500 e, i.e. electronics must be designed for a noise of ~700e.

Short strips efficient if threshold can be lowered

Hartmut F.-W. Sadrozinski, SCIPP RD50

SCIPI

Innermost Detectors at Current LHC

LHC vertex detectors all use n⁺ implants in n⁻ bulk:

- Because of advantages after heavy irradiation from collecting electrons on n⁺ implants, the detectors at the LHC (ATLAS and CMS Pixels and LHCb Vertex Locator) have all adopted the n⁺ in n⁻ configuration for doses of $5 10 \times 10^{14} n_{eq} cm^{-2}$
- Requires 2-sided lithography

million Pixels

SSD Development for ATLAS Upgrade Tracker

Microstrip Front-end ASIC (ABCn) Status

Front-End	Opt. short strip done Layout started	33mA/chip ✓ 750enc (2.5cm strips) Final S/N > 10 ✓
Back-End	Main change in DCL block to handle 160MHz	92mA/chip at 2.5V estimated
Powering	Integrated shunt regulators possible	Current limits to impose uniformity
Floor Plan	First Checks now	7.5mm by 6 ± 1 mm
P&R	Examples with pipeline and derandomizer OK	
Submission	Scheduled January 2008	Deliver by April

Current SCT ATLAS Module Designs

ATLAS Tracker Based on Barrel and Disc Supports

Effectively two styles of modules (with 2×6cm long strips)

Barrel Modules (Hybrid bridge above sensors) Hartmut F.-W. Sadrezinski, SCIPP RD50 (Hybrid at module end)

the microchips and provide the electrical services to the front end electronics Wire bonds connect the electronics to the hybrid and provide the high density connections down from the front-end to the 4 pad rows on the detectors

Double-sided Hybrid Designs - KEK

Four hybrids/module,

four connectors/module square sensors (9.754 cm x 9.754 cm)

SLHC module - Optimization

FEA thermal analyses using ANSYS

Need cooling from both ends (current ATLAS single-ended cooling)

(2-dimensional calculation)

0.1mm thick thermal grease around cooling pipe (2W/m/K)
 Dead air between sensor and hybrid (0.024W/m/K)

Individual Module - Direct Mounting

- 3rd "point" is defined by the pipe
- Cooling block is set with 2 fixation points on the pig-tail side
- 1 bracket is holding 2 neighboring modules
- The bottom left pipe is embedded in the brackets and must be assembled before the module.

2 fixed mounting points

Y. Unno

Super-Module on Cylinder

Hartmut F.-W. Sadrozinski, SCIPP RD50

Y. Unno 23

Stave Module Concept

The "stave" concept has hybrids glued to sensors glued to cold support

• A first prototype version based on the CDF run-IIb concept but using ATLAS ASICs already exists

A 6-chip wide version (Stave 2007) will use short p-in-n sensors and incorporate many of the final proposed, mechanical, thermal, electrical, serial powering and read-out features.

- Stave core fabrication, BeO hybrid design, cooling concepts and automated assembly nearing completion.
- 10 chip wide version under development

Stave-08		1 meter, <u>Double sided,</u> 2.5 cm strip, 40 segments/side 400-450 Watts 2
1		400-450 Watts ?

C. Haber

Single-sided Stave Concept

Bridged hybrid assemblies on cooled support

1.5W/Sensor Max Chip temp: -20.4C Max Silicon Temp: -23.6C Temp Gradient over Si: 1.33C

Forward Module Concepts

As for current ATLAS SCT, Forward Modules likely to require several different wedge shaped sensors

• 5 discs on each side with outer radius 95cm and inner radii from 30cm

Powering Issues

V_{ABC-N} = 2.5 V; I_{Hybrid} = 2.4 A; 20 hybrids. Low V + High I → I²R losses in cables (Want power transmission at High V + Low I)

Serial Powering: n=20; $I_{H} = I_{PS} = 2.4 \text{ A}$; $V_{PS} = nV_{ABC-N} = 50 \text{ V}$

Also saves factor ~8 in power cables/length over SCT

- Need detailed studies of failure modes and recovery

DC-DC Conversion : n=20; g =20; I_{PS} = n/g I_{H} = 2.4A; V_{PS} = g V_{ABC-N} = 50V Parallel powering also saves factor ~8 in power cables as for Serial Powering

- Issues with switched capacitors (noise?) and need for custom design to get large g (Independent powering with DC-DC costs too many cables)

Hartmut F.-W. Sadrozinski, SCIPP RD50

G. Viehhauser

	BIS	BOS	ECA	ECB	Total
Power [kW]	71.8	45.7	18.3	18.3	154.2
	47%	30%	12%	12%	

- Going to $P_{chan} = 2mW \rightarrow P_{total} = 120kW$,
- Several contributions missing (SMC, Opto-converter, DCS, etc...)
- Best guess (strips) $P_{total} = 150 kW$ within $\pm 40 kW$ (2-3×SCT).
- Dominated by barrel (even if BOS shortened).
- Investigating cooling using C_3F_8 (again), C_2F_6 or CO_2
- Reuse of existing services could represent a major challenge

Conclusions

- Activities in many areas still just starting with emphasis on completion and commissioning of current ATLAS Detector
- Management structure includes Upgrade Steering Group, Upgrade Project Office and 8 working groups in the area of the tracker replacement alone
- Major recent tracker workshops include: Genoa (18/7/05 20/8/05), Liverpool (6/12/07 8/12/07) and Valencia (10/12/07 12/12/07)
- Some impressive progress, but still plenty to do and not so much time to do it ...

ATLAS Inner Detector Technical Design Report now 10 years old http://atlas.web.cern.ch/Atlas/GROUPS/INNER_DETECTOR/TDR/tdr.html

• For more material of past internal meetings see ATLAS indico pages http://indico.cern.ch/categoryDisplay.py?categId=350