

Thin planar pixel detectors for highest radiation levels

L. Andricek, M. Beimförde, E. Fretwurst, C. Gössling, G. Kramberger, G. Lindstroem, A. Macchiolo, M. Moll, H.-G. Moser, U. Parzefall, R. Nisius, R.H. Richter

Institutes: CERN, Univ. Dortmund, Univ. Freiburg, Univ. Hamburg,

J. Stefan Inst. Ljubljana, MPI Munich

Embedded within an ATLAS-Proposal for 3D integration

Study of charge collection before and after radiation on pixelated readout nodes with different geometries and different sensor thicknesses – Check out the limits of planar detectors

Status and plans

The Challenge

Expected conditions at LHC and sLHC

Motivation for Thin Detectors

After 10¹⁶ n/cm²:

V_{dep} > 4000V (250 μm) -> operate partially depleted. Large leakage currents.

Charge loss due to trapping (mean free path ~ 25 μ m). I_e > I_h (need n-in-n or n-in-p) to collect electrons.

11th RD50 Workshop CERN Nov. 2007

No advantage of thick detectors ->thin detectors: low V_{dep} , I_{leak} (and X_0) However: small signal size is a challenge for the readout electronics

Thinning Technology

Sensor wafer: high resistivity d=150mm FZ wafer.

Bonded on low resistivity "handle" wafer".(almost) any thickness possible

Thin (50 μ m) silicon successfully produced at MPI.

- MOS structures - diodes

-No deterioration of detector properties, keep I_{leak} <100pA/cm²

Electric field and drift velocity

Is there an advantage of thin detectors compared to thick detectors operated partially depleted?

At the same voltage thin (=over depleted) detectors have a higher electric field than thick (= partially depleted) detectors

 $\Rightarrow \textbf{Higher drift velocity} \\ \Rightarrow \textbf{Better CCE}$

(however v_{drift} ~ v_{sat})

In addition the depleted volume of thick detectors is larger

⇒Larger leakage currents
 (shot noise, heat)
 ⇒Additional volume does
 not give a signal (I_{drift}<z_{dep})

QV plots (Simulations) – different detector thicknesses G. Kramberger (Schloss Ringberg 2007)

Similar Q-V characteristics up to full depletion!
Thinner sensors are beneficial at lower voltages

the more voltage you can apply the more
beneficial are thicker detectors

Status: Wafer Procurement

SOI wafer (Tracit/Soitec): 6" (backside porcessed, bonded, thinned and delivered)

thickness	type	Resistivity (Ohm.cm)	#
75	р	>2000	11
150	р	>2000	12
75	n	340	11

Epi-wafer (ITME): 4" ordered, delivery in about 4 weeks

thickness	type	Resistivity (Ohm.cm)	#
50	р	150	9
75	Ρ	300	9
150	Р	1200	9

11th RD50 Workshop **CERN** Nov. 2007

Bulk: p-type

Pixels follow ATLAS layout:, 160 x 18 pixel 50 x 400 mm2 for FEI3 chip 10 x 10 pixel arrays with smaller pith (50x200, 100, 50) for special simple readout chip Ministrips to be read by ALTAS SCT128 chip Diodes

Layout of Microstrips

SOI & EPI: 4 copies/wafer

SOI: 3 copies/wafer

30

H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich

Strip pitch (μm)	n+ implantation width (μm)	p-spray moderation width (μm)	Strip pitch (μm)	n+ implantation width (μm)	p-spray moderation width (μm)
50	30	10	50	24	10
50	30	No	50	30	6
80	30	10	50	36	6
80	30	no	80	20	No
			80	20	24

DC coupled

Punch through biasing for testing

80

96 strips (80 μ m pitch)

L=7.5 mm

24

H.-G. Moser Semiconductor

Laboratory MPI for Physics, Munich

Layout of Test Diodes

16 Frames for diodes and simple structures

4 identical frames for "Ljubljana style" structures (with for variants each)12 frames for "Hamburg style" diodes (propose 4 identical copies/wafer)

Epi wafers

Contains a subset of the test structures (only 4"):

- diodes
- mini-strips (most promising variations only)
- pixel test structures (Gregor)
- no ATLAS pixel and 3D-integration structures

Layouts transfered to CIS

Parameters need to be defined (CIS specific)

Order needs to be placed

How many?

How many variants?

Deadline for decisions: Delivery of epi-wafers due end of November!

11th RD50 Workshop CERN Nov. 2007

H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich

Processing (SOI)

Limitation: 12 Wafers

H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich

Nr	Туре	thickness	P-spray	Planned use
1	N	75	ATLAS (high)	Irrad
2	N	75	ATLAS (high)	SLID/irrad
3	N	75	ATLAS (high)	SLID/irrad
4	N	75	ATLAS (high)	SLID/irrad
5	Р	75	Low	Irrad
6	Р	75	Low	SLID/irrad
7	Р	75	High	Irrad
8	Р	75	High	SLID/irrad
9	Р	150	Low	SLID/irrad
10	Р	150	Low	Bump/irrad
11	Р	150	High	Irrad
12	р	150	High	Bump/irrad

11th RD50 Workshop CERN Nov. 2007 Irrad: can be used immediately for irradiations SLID/irrad: first processed for inteconnection, irradiation later Bump/irrad: first processed for bump bonding, irradiation later

Simulations

Simulation of electrical fields due to p-spray (M. Beimforte)

p-substrate most critical before irradiation! -> chose two different p-spray doses

H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich

Irradiation Program

Boundary conditions:

P-type

H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich

Per thickness and p-spray variant: :

4 identical copies/structure immediatly4 identical copies/structure later

N-type

Per thickness:

4 identical copies/structure immediatly

12 identical copies/structure immediately

Proposal: first step: unirradiated (reference) + 3 proton irradiations

second step: neutrons, gammas(?), additional proton doses

protons: 1E15, 3E15, 1E16 ? (or lower for 150 µm?)

Schedule

- » Begin of pre processing July 07 (definition of chips active areas for backside implantation)
- » Waferbonding: done
- » Final design: in two weeks
- » Production start: December 07
- » First samples: Spring of 2008
- » All samples: 2nd half 2008
- » Schedule irradiations in 2008!

Summary

Thin detectors

- ≻Keep V_{dep} low.
- ≻Keep I_{leak} low (power).

Reduce X₀ (if this is not an issue: backside etching not necessary, simpler fabrication)

- ➢ Results on radiation hardness and CCE encouraging.
- >Large scale industrial production possible.
- > Thickness can be adapted to radius (fluence) -> parameter!

R&D topics:

- ≻Make real pixel detectors.
- >Irradiations, measurement of CCE.
- Optimize thickness
- ≻Charge sharing.
- Optimize production process

Status

- SOI wafers delivered
- >EPI wafers ordered

- Design of teststructures almost finalized
- >SOI wafers to be processed soon (MPI HLL)
- EPI processing at CIS to follow