Cluster related hole traps with enhanced-field-emission - the source for long term annealing in hadron irradiated Si diodes -*

<u>I. Pintilie^{1,2}</u>, E. Fretwurst² and G. Lindstroem²

 ¹ National Institute of Materials Physics, Bucharest, P.O. Box MG-7, 76900, Romania
 ²Institute for Experimental Physics, Hamburg University, D-22761, Germany

* Article submitted to APL

Materials

MCz-Silicon wafers: <100>, n/P, 100 μm, 1090 Ωcm, Nd = 3.96x10¹² cm⁻³, CiS process (samples 8556-02-25 and 8556-05-35)

EPI-Silicon wafers: <111>, n/P, 72 μm on 300 μm Cz-substrate, 169 $\Omega cm,$ CiS process

-standard Oxidation (EPI-ST) (sample 8364-02-35), Nd = 2.66x10¹³ cm⁻³,

- diffusion oxygenated for 24 h/1100°C (EPI-DO) (sample 8364-05-36) Nd = 2.48x10¹³ cm⁻³

Irradiation: - 1MeV neutrons at Ljubljana; fluences of 5x10¹³ cm⁻² - Co⁶⁰- gamma irradiation at BNL (300 Mrad dose)

<u>Annealing</u> : Isothermal treatments at 80 °C

Investigation methods: - I-V, C-V - TSC

- H(116K) was detected previously*
- H(152K) ~ was attributed so far to C_iO_i

* M. Moll, H. Feick, E. Fretwurst, G. Lindstroem, Nucl. Instrum. Meth. Phys. Res. A 409, 194 (1998)

TSC results-for fully depleted diodes

TSC results-for fully depleted diodes

H(116K), H(140K) and H(152K)- hole traps with enhanced field emission

Point defects and cluster related defects

All H(116K), H(140K) and H(152K) are cluster related defects

Ioana Pintilie, 11 th RD50 Workshop, 12-14 November 2007, Geneve

How much C_iO_i can overlap to H(152K) peak ?

For T_{filling} < 30K no C_iO_i can be filled

As long as the forward injection is performed at $T_{fill} < 30K$ the magnitude of H(152K) peak is not affected by the C_iO_i defect

Ioana Pintilie, 11 th RD50 Workshop, 12-14 November 2007, Geneve

TSC spectra analysis for traps with enhanced field emission

In general, the TSC signal resulting from a hole trap in the diode is given by:

$$TSC(T) = \frac{q \cdot A \cdot w \cdot P_t \cdot e_p(T)}{2} \cdot \exp\left\{-\frac{1}{\beta} \int_{T_0}^T e_p(T) \cdot dT\right\}$$

where P_t is the concentration of the filled traps, e_p is the emission rate of holes, w the depleted width of the diode, A is the active area of the diode.

• This formalism is not suited for traps with enhanced electric-fieldemission, it may lead to huge errors in evaluating the defect level position in the band gap

• An identification of the mechanism behind the enhanced-fieldemission depends on how the experimental data fits when different potentials are accounted for the defect

Mechanisms leading to an enhancedelectric-field-emission

- Poole Frenkel effect is characteristics to coulombic wells
 - where the carrier climbs over a barrier lowered by the electric field
 - seen for electric fields $10^3 10^6 \text{ V/cm}$
 - gives a clear indication about the charge state of the defect
- pure tunneling
 - the carriers are tunneling the barrier at high energy
 - possible only for electric fields $> 10^7 \text{ V/cm}$
 - gives no indication about the defect charge state
- phonon assisted tunneling

– the carriers absorb thermal energy from the latice and then tunnel through the barrier at a higher energy

- seen for electric fields 10^4 10^6 V/cm
- gives no indication about the defect charge state

Poole Frenkel effect

 $V(r) = -q^2/4\pi\epsilon_0\epsilon_r - qFrcos\theta,$

 $\Delta E_i = V(r_{max}) = -q(qFcos\theta/\pi\epsilon_0\epsilon_r)^{1/2}$

- For one dimensional PF effect $\theta = 0$ and $e_p^{PF} = e_{p0} exp(-\Delta E_i/kT)$
- For three dimensional PF effect $0 < \theta < \pi/2$ and

$$e_p^{PF} = e_p^{0} (1/\gamma^2) \left[e^{\gamma} (\gamma - 1) - 1 \right] + 1/2$$

where, $\gamma = (qF / \pi \varepsilon_0 \varepsilon_r)^{1/2} q / k_B T$

• for F has to be considered the local electric field in the p⁺n diode:

$$F(x) = \frac{qN_{eff}(d-x)}{\varepsilon_0\varepsilon_r} + \frac{(V-V_d)}{d}$$
 if V>V_d

$$F(x) = \frac{qN_{eff}(w-x)}{\varepsilon_0\varepsilon_r}$$
 if Vd

TSC spectra analysis for traps with enhanced field emission

For Coulombic wells the emission rate depends on the local electric field and the corresponding TSC peak should be calculated according to:

$$TSC^{PF}(T) = \frac{q \cdot A \cdot P_t}{2} \int_0^w e_p^{PF}(x,T) \cdot \exp\left\{-\frac{1}{\beta} \int_{T_0}^T e_p^{PF}(x,T) \cdot dT\right\} dx$$

Results for the fit of TSC peaks with 3D-PF

The 3D-PF effect formalism describes the experiments The H(116K), H(140K) and H(152K) centers have acceptor levels in the lower part of the gap *The H*(116K), *H*(140K) *and* H(152K) centers contribute with their full concentration as negative space charge to

 N_{eff}^{0} in the initially n-type

silicon diodes

UH

The levels position in the bandgap

The parameters for the zero field emission rates describing the experimental results are:

$$\begin{split} & E_i^{116K} = E_v + 0.33 eV \ (0.285 eV^*) \ \text{and} \\ & \sigma_p^{116K} = 4 \cdot 10^{-14} \ (4 \cdot 10^{-15*}) cm^2 \\ & E_i^{140K} = E_v + 0.36 eV \ \text{and} \ \sigma_p^{-140K} = 2.5 \cdot 10^{-15} \ cm^2 \\ & E_i^{152K} = E_v + 0.42 eV \ (0.36 eV^*) \ \text{and} \\ & \sigma_p^{-152K} = 2.3 \cdot 10^{-14} \ (2 \cdot 10^{-15*}) \ cm^2 \end{split}$$

* - aparent ionization energy and capture cross sections when no field dependence of emission rates is accounted

Ioana Pintilie, 11 th RD50 Workshop, 12-14 November 2007, Geneve

The impact of H(116K), H(140K) and H(152K) defects on N_{eff}

Summary

- •Three cluster related acceptors in the lower part of the gap have been detected by TSC experiments.
- •Their zero field activation enthalpies resulted from modelling the TSC peaks with the 3D-Poole Frenkel model and taking into account the spatial distribution of the diode electric field.

•It is shown that these acceptors are responsible for the long term annealing of N_{eff} in hadron irradiated silicon diodes.

