

First results on 24 GeV/c proton irradiated thin silicon detectors

E. Fretwurst (a), L. Andricek (b), K. Koch (a), G. Lindström (a), H.G. Moser (b), I. Pintilie (a,c), R. Richter (b), R. Röder (d)

(a) Institute for Experimental Physics, University of Hamburg
(b) MPI-Semiconductor Laboratory Munich
(c) National Institute for Materials Physics, Bucharest
(d) CiS Institut für Mikrosensorik gGmbH, Erfurt

Motivation

<u>Thin detectors</u> Advantage: lower depletion voltage (V_{fd} ∝ d²), full depletion at large Φ possible lower leakage current (I_{rev} ∝ d), lower noise contribution, lower power dissipation smaller collection time (t_c ∝ d), less charge carrier trapping Draw back: smaller signal for mips (signal ∝ d) larger capacitance (Cdet ∝ 1/d), larger electronic noise

\rightarrow find an optimal thickness

Questions:

- depend the damage effects on the device thickness?
- which impurities play a major role in the damage (P, O, C, H, others)?

Material under investigation

Material	Cond. type	Orientation	$N_{eff.0} [10^{13} \text{ cm}^{-3}]$	d [µm]
EPI-ST(1)	Ν	<111>	2.6	72
EPI-DO(2)	Ν	<111>	2.6	72
EPI-ST(1)	Ν	<100>	1.5/0.88	100/150
EPI-DO(2)	Ν	<100>	1.3/0.80	100/150
FZ-50(3)	Ν	<100>	3.3	50
FZ-100	Ν	<100>	1.4	100
MCz-IP(4)	Ν	<100>	0.42	100

(1) Standard detector process (CiS)

(2) Oxygen enriched, diffusion for 24 h at 1100°C (CiS)

(3) Produced in wafer bonding technology (MPI)

(4) Rear side P implanted after thinning (CiS)

Oxygen depth profiles

- EPI-ST, 72 μm: [O] inhomogeneous,
 <[O]> = 9.3 10¹⁶ cm⁻³
- EPI-DO, 72 μm: [O] homogeneous, except surface, <[O]> = 6.0 10¹⁷ cm⁻³
- MCz: [O] homogeneous, except surface
 <[O]> = 5.2 10¹⁷ cm⁻³

- EPI-ST, 100/150 μm: [O] inhomogeneous,
 <[O]> = 5.4 10¹⁶ / 4.5 10¹⁶ cm⁻³
- EPI-DO, 100/150 μm: [O] more homogeneous,
 <[O]> = 2.8 10¹⁷ / 1.4 10¹⁷ cm⁻³
- FZ 50 μm: inhomogeneous
 <[O]> = 3.0 10¹⁶ cm⁻³
- FZ 100 μm: homogeneous, except surface
 <[O]> = 1.4 10¹⁶ cm⁻³

Development of N_{eff} resp. V_{fd} normalized to 100 μm EPI

5

 $\beta < 0$, dominant acceptor generation

Annealing of V_{fd} at 80 $^\circ C$ $_{EPI \ diodes}$

 Typical annealing behavior of non-inverted diodes:

→V_{fd} increase, short term annealing
 → V_{fd,max} (at t_a ≈ 8 min), stable damage
 → V_{fd} decrease, long term annealing

$$V_{fd}(\Phi,t) = V_C(\Phi) \pm V_a(\Phi,t) \pm V_Y(\Phi,t)$$

 \rightarrow stable damage \pm short term \pm long term annealing

- \rightarrow + sign if inverted
- \rightarrow sign if not inverted

Space Charge Sign in EPI-devices

Illumination of p+-contact with 670 nm laser light (absorption length at RT about 3 µm):

No SCSI:

RD50 Workshop, CERN, 12.-14. November 2007

Development of N_{eff} resp. V_{fd} normalized to 100 μm FZ and MCz

- Low fluence range: Donor removal, depends on N_{eff,0}, Minimum in N_{eff}(Φ) shifts to larger Φ for higher doping
- <u>High fluence range:</u> $\beta(FZ-50) \approx \beta(MCz-100) > \beta(FZ-100)$

•
$$\beta > 0 \text{ or } < 0 ?:$$

Expected:

FZ-50, **FZ-100** $\rightarrow \beta < 0$, inversion, low [O]

MCz-100 $\rightarrow \beta > 0$, no inversion, high [O]

Annealing of V_{fd} at 80 $^{\circ}C$ $_{FZ\ diodes}$

Annealing behavior of FZ-100 μm: Inverted diode V_{fd} decrease (short term component) V_{fd,min} (stable component) V_{fd} increase (long term component)

for protons and neutrons

Annealing behavior of FZ-50 μm:

Big surprise: after proton damage no inversion

after neutron damage inversion

Comparison protons versus neutrons EPI-72 μm, MCz-100 μm

- EPI-devices (here 72 µm) reveal no SCSI after proton damage contrary to neutron damage
- Same behavior holds for thin MCz-diodes
- $\beta > 0$ (dominant donor creation) for protons (more point defects than clusters)
- β < 0 (dominant acceptor creation) for neutrons (more clusters than point defects)</p>

Comparison protons versus neutrons FZ-50 μm, FZ-100 μm

FZ-50 μm:

- β > 0 for protons (dominant donor creation)
- β < 0 for neutrons (dominant acceptor creation)</p>

FZ-100 μm:

 β < 0 for protons and neutrons (dominant acceptor creation)

Generation current increase

Generation current increase for 24 GeV/c protons (as irradiated):

- Almost linear increase between 10¹³ cm⁻² up to 6·10¹⁵ cm⁻² damage parameter α varies between 5·10⁻¹⁷ and 6·10⁻¹⁷ A/cm
- Independent on material type and device thickness

β-parameter for 24 GeV/c protons

Preliminary results

- <u>β versus device thickness</u>
 - Trend: β decreases with increasing thickness, but $\beta(EPI-DO) > \beta(EPI-ST)$
 - \rightarrow oxygen effect ?
- <u>β versus oxygen concentration</u>
 - Trend: β increases with increasing [O], but β for EPI-ST(72 µm) and FZ(50 µm) outside the trend

Microscopic studies needed

Comparison of thin Si-detectors processed on different materials (n-type EPI, FZ and MCz) after 24 GeV/c proton irradiation shows:

- N_{eff} development dominated by donor removal (P, low fluence) and introduction of positive space charge ($\beta > 0$, donors, high fluence) except FZ-100 µm
- Surprise: no SCSI for FZ-50 µm after proton damage contrary to neutron damage although [O] much smaller compared to EPI or MCz material
- Inversion/no inversion demonstrated by annealing of V_{fd} or 670 nm TCT
- Reverse current increase independent on material type and device thickness
- β-value correlation?
 Device thickness: trend visible but possibly indirect effect more likely
 Oxygen concentration: trend visible mainly for EPI-DO and MCz, EPI-ST and FZ partly outside the trend possibly due to strong inhomogeneity in [O]

TSC Studies on Neutron Irradiated Devices

- V₂, clustered - C_iO_i - VO

Main defects:

- Bistable donor:
 - **BD**^(0/++)

BD^(+/++) first time observed

- Several shallow hole and electron traps (H(40K), E(28K))

Main differences:

- BD(+/++) only in EPI-DO?
- BD(0/++) dominant in EPI-DO, but also detected in EPI-ST and MCz
- [VO] identical in EPI-DO and EPI-ST, lower in MCz