Freiburg status report on 3D-stc detectors

11th RD50 Workshop 13 November 2007

Gregor Pahn¹, Richard Bates⁴, Gian-Franco Dalla Betta², Simon Eckert¹, Lars Eklund⁴, Celeste Fleta⁴, Karl Jakobs¹, Susanne Kühn¹, Chris Parkes⁴, Ulrich Parzefall¹, Claudio Piemonte³, David Pennicard⁴, Alberto Pozza³, Barinjaka Rakotomiaramanana⁴, Andrea Zoboli², Nicola Zorzi³

> ¹ Albert-Ludwigs University, Freiburg, Germany ² INFN and University of Trento, Italy ³ FBK-irst Trento, Italy ⁴ University of Glasgow, UK

bmb+f - Förderschwerpunkt

ATLAS

Großgeräte der physikalischen Grundlagenforschung

Outline

- The Sensors
- The Modules
- Experimental setups
- Measurements before and after irradiation
 - Noise
 - Charge Collection
 - Position resolved CCE scans
- Test beam @ CERN
- Summary and Outlook

The Sensors

- 3D-stc n⁺-on-p microstrip devices from FBK-irst, Trento
- Different materials and isolation schemes
- Thickness
 - FZ 525 μm
 - Cz 300 µm
- 64 strips
 - strip pitch 80 μm
 - length 18.4 mm
- 230 columns per strip
 - column pitch 80 μm
 - depth 150 μm
- AC coupled

The Modules

- Readout
 - Based on 40MHz ATLAS SCT EndCap electronics
 - Binary readout

Experimental setups

Beta source

- based on a Sr 90 β -source and two thin scintillators
- triggered from MIP-like electrons
- cooled setup: sensor temperature -10 °C

IR Laser

- Penetration depth @ $\lambda = 982nm \approx 100 \mu m$
- Length of pulse \approx 1-2ns
- Microscope to focus optically
 → laser spot Ø ≈ 4–5µm
- *x-y* stages with µm resolution
- z-axis manual, but also with µm accuracy
- Nitrogen flushed test box with cooling system

- Irradiation
 - 26 MeV protons up to a fluence of 0.9 x 10¹⁵ Neq/cm²
 - measurements without annealing

Noise – CZ p-spray unirradiated

- uniform across sensor
- decreases rapidly with
 V_{bias} until
- ► lateral depletion is reached at V_{Bias} ≈ 25V
- V_{Bias} > 30V: noise ≈ 1200 electrons
- sensor continues to deplete towards backside → slow decrease

Comparison of 3D-stc detectors and ATLAS SCT Endcap Modules

(A. Abdesselam et al. NIMA575 (2007))

Noise – CZ p-spray irradiated

- Iower noise on sensor after irradiation, reason not clear
- I_{leak,max} = 0.017 A/cm³ at V_{Bias} = 400V (corrected to 20 °C), corresponds to expectations

Noise – FZ sensors

- Before irradiation
 - noise comparable to CZ sensor
 - lateral depletion @ $V_{Bias} \approx 7 V$ (p-stop) / 12 V (p-spray)
- After irradiation

FZ p-stop:

 high noise above V_{Bias}
 = 95 V, low noise of 900 electrons until microdischarge starts

- noise drops steeply at ≈ 50 V, microdischarge starts at 250 V
- shows low noise until high voltages

Collected charge – CZ p-spray

- Sensor performance not degraded after irradiation if full depletion (overdepletion) can be achieved
- Collected charge not measurably reduced by trapping

Collected charge – FZ p-spray

 Collected charge at 300 V for FZ sensor less than for CZ sensor (+ 0.3 fC)

Position resolved Laser scans

- Cz p-spray, unirradiated
- 5µm step size
- ▶ 80µm × 80µm area
- y axis along the strips
- At variable bias voltage

signal on left strip

signal on right strip

CCE as a Function of Applied Bias Voltage for CZ p-spray

Gregor Pahn, Universität Freiburg

Test beam setup

- ATLAS test beam at CERN H8 area with
- this work: close collaboration with Glasgow
- Bonn ATLAS Telescope (BAT), 5µm resolution

Devices under test

Freiburg module

- 3D-stc n⁺-on-p Cz microstrip devices from FBK-irst, Trento
- strip length 18.4mm
- p-spray / moderated p-spray

- Glasgow module
 - planar n⁺-on-p devices by Micron, FZ/Cz (3Ds from ICEMos and 3D-dtc not available)
 - strip length 3 / 1 / 1cm

- all sensors were simultaneously read out with analogue 40MHz LHCb readout (Beetle chip and TELL1, see talk by Lars Eklund)
- Shaping time 25ns, 5 consecutive time bins

Correlation plots

- No SN cut, threshold for noise suppression
- ► Correlation visible → sensors positioned in beam
- Glasgow module mounted upside-down wrt BAT Module 1z

Pulse shape and Landau for 3D-stc CZ p-spray sensor

Summary and Outlook

- Several 3D-stc prototypes have been tested with different setups (beta source, Laser) and 40MHz ATLAS SCT EC readout before and after irradiation
- Noise for Cz and FZ reasonably low before and after irradiation comparable to ATLAS SCT
- Charge Collection: little degradation of sensors due to irradiation
- Position resolved scans show good uniformity across sensor and low field region between strips (inefficient CCE)
- Test beam with 180GeV π and 40MHz LHCb readout
- Test beam analysis ongoing position resolved scans with MIPs possible
- More sensors to be irradiated, also with higher fluences

Thanks to FBK-irst (Trento) for sensors and simulations, to Alex Furgeri (Karlsruhe) for irradiation and to Glasgow for test beam support!

The End

- Backup Slides
 - 3D and 3D-stc
 - Beta source setup
 - IR Laser setup
 - Rebondable Fan-ins
 - CC all sensors unirradiated
 - Signal/Noise
 - 3D-stc depletion simulation
 - Low CCE interstrip region for Cz p-spray
 - Low CCE interstrip region for FZ p-stop

3D and 3D-stc

- > 3D: decouple depletion and thickness (→Signal) by depleting "sideways" (Parker et al. NIMA395 (1997))
- 3D-stc: single type columns, not completely etched through
- Simplification of processing
 - no support wafer
 - no wafer bonding
 - → lower price
 - → ideal to optimize technology and study charge collection mechanism in different field
 - → important steps towards a full 3D device

Gregor Pahn, Universität Freiburg

metal layer

p

Beta source setup

IR Laser setup

Rebondable Fan-ins

Shape determined by layout of ATLAS-SCT-EC hybrid

Collected charge - unirradiated

V_{Bias} is limited by leakage current limit

Signal/Noise

- Before irradiation
 - FZ sensors: Signal/Noise ~ 15 (@ $V_{Bias} = 80$ V)
 - CZ sensor: Signal/Noise ~ 11 (@ $V_{Bias} = 80$ V)
- After irradiation
 - FZ p-spray sensor: Signal/Noise ~ 12 (@ $V_{Bias} = 300 \text{ V}$)
 - CZ p-spray sensor: Signal/Noise ~ 13 (@ $V_{Bias} = 500 \text{ V}$)
- Sensors with p-spray isolation show little degradation caused by irradiation (Fluence 0.9 x 10¹⁵ Neq/cm2), in case full depletion (overdepletion) can be achieved.

3D-stc Simulations – Depletion

- Rapid lateral depletion at around 5V (FZ Si)
- Then depleting like a planar device
- Low Field in the central region remains

Interstrip region for the Cz p-spray sensor

- Region with lower CCE, but quite narrow ≈ 5µm
- Signal drops by ≈25% 30%

- High resolution scan:
 - 2µm step size
 - 50µm×50µm area
 - *y*-axis along the strips
 - At variable bias voltage
- Width independent of bias for V_{bias} > 25V

CCE as a Function of Applied Bias Voltage for FZ p-stop

- Sensor unirradiated
- Lateral depletion around 12V
- Low CCE region width ≈ 13µm
 → larger than for p-spray (≈ 5µm)
- isolation affects the electric field

11th RD50 Workshop, CERN, 13 November 2007

Gregor Pahn, Universität Freiburg