

Lars Eklund

LHCb Upgrade: LHCb **Flavour Physics** at High Luminosity

•LHCb - Aims for first phase (~10 fb⁻¹, ~ 5 years) •SuperLHCb physics – Probing New Physics SLHCb Detector and the VESPA Conclusion- Forward Plan

VEIO Superior Performance Apparatus CERN, Glasgow, Lausanne, Liverpool, NIKHEF, Syracuse

RD50 Meeting, CERN, November 12th 2007

Dedicated Experiment for study of CP Violation & Rare Decays in the B System

- Full spectrum of B hadrons: $B_{u,c}^{\pm}$, $B_{d,s}^{0}$, baryons
- \bullet Bs system, All angles and sides of both CKM triangles
- Lots of events ! $\sigma_{b\bar{b}} \approx 500 \,\mu b$, $O(10^{12}) \,b\bar{b}$ pairs per year

VELO

Installed in pit 31st
 October 2007

Flavour Physics Progress

- Spectacular progress in heavy flavour physics in recent years:
 - Baseline measurement angle β (J/ ψ K_s)
 - B_s Oscillations Measurement, Charm mixing results (D_0 - D_0)
- Impressive range of additional measurements

LHCb Goals - First Phase 10 fb⁻¹

- First observation of very rare decay $B_s \rightarrow \mu^+ \mu^-$
- B_s mixing phase ϕ_s at 0.01 rad
- Unitarity Triangle
 - γ at few degrees
 - B→DK
 - Bs→DsK
 - $B(s) \rightarrow h+h-$ exploiting U-spin

VELO n-on-p Replacement

- 1st generation VELO n-on-n strip detectors
 - Will survive ~ 5×10^{14} 1 MeV n_{eq}/cm²
- 2nd generation VELO replacement n-on-p detectors needed for initial programme
 - Minor design changes only
 - One prototype module installed in 1st VELO
 - Approved project
 - Construction in Liverpool will start summer 2008
- Here we discuss the longer term upgrade (VELO→VESPA)
 - Major design changes

Upgrade Physics Programme

Complementary to ATLAS / CMS direct searches

- New particles are discovered
 - LHCb measure flavour couplings through loop diagrams
- No new particles are found
 - LHCb probe NP at multi-TeV energy scale

Study new physics through loop effects

One example: LHCb upgrade can separate SM predictions from Little Higgs model predictions LHCb Physics Programme Limited by Detector But NOT Limited by LHC

- Upgrade to extend Physics reach
 - Exploit advances in detector technology
 - Radiation Hard Vertex Detector
 - Displaced Vertex Trigger
 - Better utilise LHC capabilities
- Timescale, 2015
- Collect ~100 fb⁻¹ data
- Modest cost compared with existing accelerator infrastructure

Independent of LHC upgrade

- SLHC not needed
- But compatible with SLHC phase

Initial Phase of LHCb Operations

Data taking starts 2008

- **Defocus LHC beams**
- LHCb L= 2x10³² cm⁻²s⁻¹

- Displaced Vertex trigger
 - 2nd level of triggering
- Veto multiple Interactions
 - On first level trigger
- Factor 50 below ATLAS/CMS design luminosity
- Most events have single interaction
- LHCb Upgrade L= 2x10³³ cm⁻²s⁻¹
 - Cope with > 4 int./x-ing
- SLHC peak L= 8×10³⁴ cm⁻²s⁻¹
- Baseline 40MHz, alternate High, Low I

Select Low I for desired luminosity

rate of pp interactions

LHCb Trigger System

Will have to cope with 4 interactions / beam crossing

Current 1st Level Trigger Performance

Existing 1st Level Trigger 1MHz readout

- Veto on multiple interactions
- Existing Trigger based on:
 - High p_T Muons
 - Calorimeter Clusters

Require Displaced Vertex Trigger At 1st level

Trigger Gains – 40 MHz readout

- Improve efficiency for hadrons and photons.
- Current efficiencies:
 - $-\epsilon_{\text{Trig}}(B \rightarrow \text{hadronic}) \sim 25-35\%$
 - $\varepsilon_{\text{Trig}}(B \rightarrow \gamma X) \sim 30-40\%$
 - $\varepsilon_{\text{Trig}}(B \rightarrow \mu\mu X) \sim 60-70\%$
- Higher Level Trigger
 - Only limitations
 - CPU
 - Algorithmic Ingenuity
 - (Former) improves with Moore's Law

LHCb Upgrade Baseline & Issues

- Trigger in CPU Farm
 - Event building at 40 MHZ, CPU power OK
 - Hadron efficiency ~ factor two improvement
- Read-out all detector 40MHz
 - Replace all FE Electronics
 - Vertex locator, Silicon Tracker, RICH HPD,
 - Outer Tracker FE, Calorimeter FE boards
- Radiation Damage
 - Need to replace Velo anyway
 - Inner part of Shashlik Calorimeter
 - Inner part of silicon tracker
 - Remove muon chamber before Calorimeter
- Occupancy
 - − Inner part of outer tracker, $6\% \rightarrow 25\%$
 - Increase silicon coverage (faster gas, scintillating fibres)
 - Tracking algorithms for higher occupancy

Inner / Outer Tracker

Silicon Trackers in LHCb

- Trigger Tracker 8 m² silicon strips
 - Remains, modest pitch improvement in central region (200 →100 µm)
- Inner Tracker
 - Complete replacement of outer tracker with Si not possible
 300 m² or necessary.
 - Possible design, 10 m^2 device with 100 μm & 200 μm pitch sensor
 - NIEL Radiation level modest 1x10¹³ 1 MeV n_{eq}/cm²/year at upgrade

Radiation Hard Vertex Locator

Active Silicon only 8mm from LHC beam

- Upgrade Requires high radiation tolerance device
- Strixels / Pixel layout
 - All leading RD50 technologies considered
 - n-on-p, MCz, 3D

Harsh Radiation Environment

 LHCb VELO will be *HOT!*

- Maximum Fluence of current detector
 NIEL 1.4 * 10¹⁴ MeV n_{ed}/cm²/year
- Strongly non-uniform

• dependence on $1/r^2$ and station (z)

VESPA requirements:

- ~ 10 times luminosity
- ~ 10 times the dose
- ~ $10^{16} n_{eq}$ /cm² charged particle

tolerance

Approach 1 – Enhanced VELO

- Reduce inner active radius to approx 5.5 mm (from 8.2 mm)
 - 35 % improvement in impact parameter performance
- Reduced inner pitch of 20-30 microns (giving a resolution ~5-7 microns with analogue readout and 9° incidence).
- Reduced strip lengths (4096 strips per sensor), giving an increased S/N of approximately 20% due to the reduction in capacitance (note that the routing lines still provide substantial capacitance)
 - double metal, use MCMD technology ?
- Improved radiation tolerance with the use of shorter strips and a bias chain with greater HV capacity.
- Need new 40MHz read-out front-end chip
- 40MHz readout means processing board can remove FE chip signal spillover from previous beam crossing

Small pixel size $50 \times 400 \rightarrow 50 \times 200 \mu m$? (follow ATLAS?) Need two layers per module or one?

Material – sensor + chip (back thinned) + bumps + cooling

Could have significant advantages for pattern recognition - Especially if add magnetic field in VELO region

Strips or Pixels?

- Both potentially radiation hard
- Pixels better pattern recognition properties
 - Not major problem (Velo trk eff 97.3%, ghosts 2.3%)
 - But could be major trigger advantage
- Require approx. 50 μ m² pixels
 - Achieve same resolution as Velo
- Strip geometry more `natural'
 - Tesselate, strixels
 - Smaller number of read-out channels
 - But if you can read-out the pixels who cares ?
- Material
 - Less pixel layers (not R/Phi)
 - Detector, Chip and services (cooling)
 - X₀ per layer 1.2% (BTeV), 1.7% (CMS), 1.8% (ATLAS)
 - Thin electronics, typically 500 μ m, achieve <200 μ m

Move closer

5mm limit from Accelerator

- Current safe guard ring design 1mm
- Use Edgeless technology?
 - Dope edges
 - etch, laser cut

Baseline first strip 8mm 7.1mm 10% improvement in IP

Material Budget: RF-foil

- Velo design has the services mostly outside the acceptance
- Still Silicon is not the main contributor RF foil
- Could be different for pixels VELO layers < 30% ATLAS pixel layers

- BTev 150 μ m thick wires/foil, 6mm from beam
- In primary vacuum
- Cryo panels for absorb outgassing
- TOTEM
- 1mm from beam (v. diff optics)
- 150µm foil

Velo Tracking Efficiency vs Luminosity

21

Prototype in LHC !

• Free station slots available

- Removed during reoptimisation

Pile-up sensor positions

Upgrade Summary

- Flavour Sector of New Physics
 - Major Physics Programme at modest cost
- Critical Technology
 - -Radiation Hard Vertex Detector
 - RD50 Technologies
 - -With Displaced Vertex Trigger
- Compatible with but independent of SLHC

UNIVERSITY of

GLASGOW

8TH INTERNATIONAL CONFERENCE ON POSITION SENSITIVE DETECTORS

University of Glasgow, Scotland 1st - 5th September 2008

The conference explores the scientific and technical developments of detector systems used in: Astronomy and space science; Astrophysics; Condensed matter studies; Industrial applications; Life sciences; Medical physics; Nuclear Physics, Particle physics and Synchrotron based science.

psd8@physics.gla.ac.uk http://www.psd8.physics.gla.ac.uk

National Organising Committee (subject to change) P.P. Allport, Liverpool R.L. Bates, Glasgow A.J. Bird, Southampton C.R. Cunningham, UK ATC, Edinburgh G.E. Derbyshire, STFC, RAL P. Evans, ICR, London R. Farrow. STFC. Daresbury W. Faruqi, MRC, Cambridge M. Grande, Aberystwyth P.R. Hobson, Brunel D.P. Langstaff, Aberystwyth P.J. Nolan, Liverpool D.J. Parker, Birmingham P.J. Sellin, Surrey A. Smith, MSSL, London R. Speller, UCL, London T.J. Sumner, IC, London S. Watts, Manchester