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Simulation methods
S t ti f 10th RD50 ti• See presentation from 10th RD50 meeting

• Synopsis TCAD finite element simulation Example of a 
simulated 3D 

• Damage model
– Trap dynamics modelled directly
– P-type FZ material proton irradiation

structure

n+ contact
P type FZ material, proton irradiation

– Based on work at Uni. Perugia – see M. 
Petasecca et al., IEEE Trans. Nucl. Sci., 
vol. 53, pp. 2971–2976, 2006

p+ contact
oxidevol. 53, pp. 2971 2976, 2006

– Modified to match experimental trap times 
(V. Cindro et al., IEEE NSS, Nov 2006)
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1

0.95.0*10-145.0*10-15VVVEc-0.46Acceptor

1.6139.5*10-149.5*10-15VVEc-0.42Acceptor

(cm-1)σh (cm2)σe (cm2)Trap(eV)Type
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N+ on p strip detector: CCE
At hi h fl i l t d CCE i l th i t l l• At high fluence, simulated CCE is lower than experimental value
– Trapping rates were extrapolated from measurements below 1015neq/cm2

– In reality, trapping rate at high fluence probably lower than predicted
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Simulated strip
PP Allport et al., IEEE Trans. 
Nucl. Sci., vol 52, Oct 2005
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ATLAS 3D detector: CCE
E i t d 230 b t t 3 l ATLAS i l• Experiment used 230μm substrate, 3 n+ columns per ATLAS pixel

• Defocused IR laser pulse was used to flood the pixel with charge; the 
simulation mimics this

• Both experiment and simulation show improved CCE at high fluence
C. da Via et al., 
Liverpool ATLAS 3D 
meeting Nov 06
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ATLAS 3D simulations
• ATLAS pixel (400μm * 50μm) allows layouts with different electrode spacing

– No of n+ columns per pixel could vary from ~2-8
P i ATLAS lt h d 3 l• Previous ATLAS results shown used 3 columns

• Simulations use 230μm-thick p-type substrate, n+ readout 
– Columns have 5μm radius, with dopant profile extending ~2μm furtherμ p p g μ
– P-spray is used to isolate the columns

400μm

3 50μmElectrode
spacing

133μm cell length

50 ll l th

8

Note larger volume occupied by columns50μm cell length Note larger volume occupied by columns



ATLAS 3D – Depletion voltage at 1016neq/cm2

D l ti lt ill d d b t t t i l (thi d l t h• Depletion voltage will depend on substrate material (this model matches p-
type FZ, rather than oxygenated silicon)

• No. of n+ columns shown next to each data point

250 3Depletion voltage

• Vdep proportional to depletion distance squared
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ATLAS 3D – high-field voltage at 1016neq/cm2

A i t j d f “ f lt ” f d th bi t hi h th• As an approximate judge of a “safe voltage”, found the bias at which the 
maximum field in each device reached 2.5*105V/cm

• Surprisingly, all the devices gave much the same results at 1016neq/cm2

250 3Depletion voltage

• Used 150V bias in following simulations
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Device structure and high-field regions 
• P-spray links p+ columns to n+
• So, the p-spray is at the same potential as the p+, resulting in high field at 

front surface where it meets the n+ columns
• This effect isn’t strongly affected by the electrode spacing itself
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Charge collection vs position at 1016neq/cm2

Si l t d MIP i th h d t t t 25 iti t hl• Simulated MIPs passing through detector at 25 positions, to roughly map 
the collection efficiency. 150V bias. Charge sharing not taken into account.

• Low collection within n+ and p+ columns (seen experimentally)
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Charge collection vs position at 1016neq/cm2

C ll ti ti i i if• Collection across active region is non-uniform
• This becomes more significant as the electrode spacing increases
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Average ATLAS CCE at 1016neq/cm2

• Average CCE found by flooding entire pixel with charge. 150V bias.
• Previous simulations used to find RMS variation from average, as a 

measure of nonuniformity. Shown by “error bars”.
• Collection in active region improves as electrode spacing is reduced
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Total capacitance seen at each ATLAS pixel
• The total pixel capacitance was found with 1012cm-2 oxide charge (a typical 

saturated value) but without radiation damage.
• C increases rapidly with no. of columns – the column capacitances add in 

600 8 Total C per pixel

parallel, and the capacitance per column gets larger as spacing decreases.
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Signal to noise estimate at 1016neq/cm2

U i it d t f i di t d ATLAS ( ’t• Uses noise vs. capacitance data from unirradiated ATLAS sensors (won’t 
include high leakage current or damage to readout chip)
– Assume 100fF from preamplifier input and bump bond

Al 70 h h ld di i– Also 70e- threshold dispersion
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Comparison of double-sided & standard 3D

• Full 3D (Parker et al., Stanford, Sintef, ICEMOS) 
• Double-sided 3D (CNM, Trento)

R d t l t h d f f t f

n+ 
readout

– Readout columns etched from front surface 
– Bias columns etched from back surface 
– Columns don’t pass through full substrate thickness

• The maximum column depth that can be etched is about 250μm 
(with a 5μm radius) ( μ )
– Double-sided 3D simulation uses 250μm columns in a 

300μm substrate
– Full-3D device used for comparison is 250μm thickFull 3D device used for comparison is 250μm thick

• Device structure used for comparison
N+ columns used for readout p type substrate– N+ columns used for readout, p-type substrate

– 55μm* 55μm pixel size (Medipix)
– 100V bias

p+ bias



Double-sided 3D field and depletion
Wh th l l (f 50 t 250 d th) th• Where the columns overlap, (from 50μm to 250μm depth) the 
field matches that in the full-3D detector

• At front and back surfaces, fields are lower as shown below
A.

• Region at back is difficult to deplete at high fluence

0
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1e+16neq/cm2, front surface
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Collection with double-sided 3D
Sli htl hi h ll ti t l d• Slightly higher collection at low damage 

• But at high fluence, results match standard 3D due to poorer collection from 
front and back surfaces.

20% greater substrate 
thickness
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High-field regions in full and double-sided 3D
• Simulated full and double sided 3D using p spray isolation at 1016 n /cm2

D bl id d 3D

• Simulated full and double-sided 3D using p-spray isolation at 1016 neq/cm2

• Double-sided 3D is less prone to surface effects because columns are 
etched from opposite sides, but high-field regions develop at n+ column tip.
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Conclusions
R di ti d d l d i ith i t• Radiation damage model and comparison with experiment
– Simulation models effects of Neff and charge trapping
– Typically, charge collection results lower than experiment (simulated 

charge trapping rate is probably too high)

• Behaviour of different ATLAS pixel 3D layoutsp y
– Devices with few n+ columns per pixel have high depletion voltage 

(without much improvement in breakdown behaviour), lower average 
CCE, and poorer CCE uniformity across the active region

– However, with 6-8 n+ columns the high capacitance reduces SNR, and 
the volume occupied by the columns becomes larger

– Need to find a compromise; 4-5 columns?p ;

• Comparison of double-sided 3D & standard 3D
Double sided 3D has similar charge collection performance– Double-sided 3D has similar charge collection performance

• Greater substrate thickness counteracts poorer collection from 
surfaces

Structure reduces high field effects at front and back surfaces but high– Structure reduces high-field effects at front and back surfaces, but high 
fields develop at tips of n+ columns



Thank you for listeningThank you for listening
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Introduction
+ve+ve

• 3D detector structure 
– ~250μm substrate thickness
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P-type FZ model – proton irradiation

1.6139.5*10-149.5*10-15VVEc-0.42Acceptor

η 
(cm-1)σh (cm2)σe (cm2)Trap

Energy 
(eV)Type

0.93.23*10-143.23*10-13CiOiEv+0.36Donor

0.95.0*10-145.0*10-15VVVEc-0.46Acceptor

• See presentation from RD50 June 2007
• Based on work at Uni. Perugia – see M. Petasecca et al., IEEE Trans. Nucl. 

Sci vol 53 pp 2971–2976 2006Sci., vol. 53, pp. 2971 2976, 2006
• Modified to give correct trapping times while maintaining depletion 

behaviour
n∂ β eΦβ1

• Experimental trapping times for p-type silicon (V. Cindro et al., IEEE NSS, 

e

n
t
n

τ
−=

∂
∂ ησβ e

e
the v=eqe

e

Φ= β
τ

p pp g p yp ( , ,
Nov 2006) up to 1015neq/cm2

– βe= 4.0*10-7cm2s-1 βh= 4.4*10-7cm2s-1

• Assume these can be extrapolated to 1016neq/cm2



Comparison with experiment
• Compared with experimental results with proton irradiation
• Depletion voltage matches experiment
• Leakage current is higher than experiment, but not excessive

P-type trap models: Depletion voltages

Leakage current is higher than experiment, but not excessive

P-type trap model: Leakage Current

550

600
“Comparison of Radiation Hardness of P-in-N, N-in-N, and N-in-P Silicon 
Pad Detectors”, M. Lozano et al., IEEE Trans. Nucl. Sci., vol. 52, pp. 1468–
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Device structure and high-field regions 
• P-spray links p+ columns to n+
• So, the p-spray is at the same potential as the p+, resulting in high field at 

front surface where it meets the n+ columnsAt higher bias the p-spray 
around the n+ column becomes depleted

• These effects won’t be greatly affected by the electrode spacing itself

Y

X

Z5-column ATLAS 3D device
1016neq/cm2, 150V bias Y

X

Z5-column ATLAS 3D device
1016neq/cm2, 150V bias

5-column ATLAS 3D, 
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5-column ATLAS 3D, 
1016neq/cm2, 150V bias
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Example of CCE with varying bias

Collection vs bias in 5-column ATLAS

• CCE curves show a smaller gradient after depletion voltage is reached
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Electric field distribution – 8 columns per pixel
• The previous simulations showed an “average” CCE for the pixel, but the 

uniformity across the pixel is also important. The following slides show how 
the electric field distribution varies with the pixel layout
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Electric field distribution – 6 columns per pixel
• Even at 1016neq/cm2, the devices with 6-8 columns show a reasonably 

uniform electric field across the pixel, with the field being weakest at the null 
points at the corners

ATLAS 3D, p-type, 66.7μm cell, 6 column
1e+16neq/cm2, 150V bias
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Electric field distribution – 4 columns per pixel
A th l th f th ll t l th l fi ld i b• As the length of the cell gets longer, the low-field regions become more 
substantial. Depending on where a track hits, the collection may be less 
than the “average” value calculated earlier.

ATLAS 3D, p-type, 100μm cell, 4 column
1e+16neq/cm2, 150V bias
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Electric field distribution – 3 columns per pixel
• If the longer pixel lengths are used, the region around the p+ has a weak 

field, and might not be depleted.
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ATLAS 3D capacitance
• The simulations will take into account nearest neighbouring p+ columns, 

and n+ columns in adjacent pixels.
• These simulations used saturated oxide charge (1012cm-2) but no bulkThese simulations used saturated oxide charge (10 cm ) but no bulk 

damage



Design choices with 3D
• Choice of electrode layout:

– In general, two main layouts possible
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CCE with different 3D layouts
Littl diff i lt• Little difference in results

• Alternative structure has slightly better average CCE at 1016neq/cm2

Collection from different 3D layoutsCollection from different 3D layouts
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Comparison of layouts at 1016neq/cm2

• Layout with 3 p+ columns per n+ gives slightly higher average CCE (10ke-
compared to 9ke-) but CCE with position is much less uniform
– Greater electrode volume, greater asymmetry in field & weighting fieldGreater electrode volume, greater asymmetry in field & weighting field
– Alternative structure doesn’t appear worthwhile
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F ll d l ti i hi d ll d 100V b t l t i fi ld b l

Full 3D – electric field at 100V
• Full depletion is achieved well under 100V, but electric field becomes less 

symmetric at high fluence
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3 bi l d t l

Alternative full-3D
• 3 bias columns per n+ readout column
• Structure increases field around n+, reduces it around p+, particularly at 

high fluences
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Weighting potentials
• These two layouts give different weighting potentials
• Standard full 3D: Symmetrical for both electrons and holes
• Alternative full 3D: Favours electronsAlternative full 3D: Favours electrons

– Possibly larger total signal
– Poorer uniformity in response at different positions?
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Dual-column 3D (BNL)
C l t h d f f t ti ll th h f• Columns etched from front partially through wafer

• Where columns overlap, field matches full-3D
• Back surface has lower field, difficult to deplete

Dual-column 3D, p-type,
1e16neq/cm2, back surface
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Variation in CCE with position at 1016neq/cm2

• Simulated a series of particle tracks passing through a standard full 3D 
detector at different positions (100V bias)

• Columns have low sensitivityColumns have low sensitivity
• Aside from this, charge collected varies from around 8-12ke-

Collection with position - 3D detector at 100V bias
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Positions of particle tracks
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