

PROPERTIES OF THE HIGGS BOSON WE CANNOT "UNSEE"

LHC Physics 2013 André David (CERN)

Higgs in CMS – ca. 2008

[http://cern.ch/go/dJf7] [http://cern.ch/go/Sx8m]

• **Higgs boson** – the field's massive radial excitation, tacit to Brout and Englert, massless via approximations in Guralnik et al., and explicitly mentioned by Higgs (1964).

• Viability – photons and massive weak bosons can coexist was shown by Kibble (1967).

How SM Higgses are born

3

[http://cern.ch/go/cWH8] [http://cern.ch/go/SnJ8]

a.david@cern.ch

LHC Physics 2013

How SM Higgses die

4

[http://cern.ch/go/qkh6] [arXiv:1208.1993]

Coupling and kinematics drive BR (bb, WW,
 τ τ, ZZ).

Decays with photons
 (γ γ, Ζγ) only through loops.

Things you can't "unsee"

[http://cern.ch/go/Dxh7]

Things you can't "unsee"

[http://cern.ch/go/Dxh7]

Things you can't "unsee"

[http://cern.ch/go/Dxh7]

(self-inflicted) Mission: impossible

		e La	
	Fig	ures	
(con) (con)	CEN (DE)		(m) (m)
(gs) (jps)	(cps) (ipcs)	(cps) (pcs)	Ceps (jpg)
	And the first of t		
			(cps) (lpcg)
	(ggs) (jpgg)	(cra) (cray)	
		0000 0000	

ATLAS			
Channel	Conference note	L	Date
Spin Combination	ATLAS-CONF-2013-040	up to 25 fb-1	16/04/2013
Couplings Combination	ATLAS-CONF-2013-034	up to 25 fb-1	14/03/2013
Higgs to Diphoton spin	ATLAS-CONF-2013-029	21 fb-1	13/03/2013
Higgs to WW(IvIv) spin	ATLAS-CONF-2013-031	21 fb-1	11/03/2013
Higgs to WW(IvIv)	ATLAS-CONF-2013-030	25 fb-1	11/03/2013
2HDM WW(IvIv)	ATLAS-CONF-2013-027	13 fb-1	11/03/2013
Combined of Mass	ATLAS-CONF-2013-014	up to 25 fb-1	05/03/2013
Higgs to Diphoton	ATLAS-CONF-2013-012	25 fb-1	05/03/2013
Higgs to 4 leptons	ATLAS-CONF-2013-013	25 fb-1	05/03/2013
ZH (invisible decays)	ATLAS-CONF-2013-011	18 fb-1	05/03/2013
Higgs to dimuon	ATLAS-CONF-2013-010	21 fb-1	05/03/2013
Higgs to Zgamma	ATLAS-CONF-2013-009	25 fb-1	05/03/2013

May-2013	Full 8 TeV dataset: VBF H, H -> bb	TWiki, PAS
May-2013	Full 8 TeV dataset: ttH, H -> gamma gamma	TWiki, PAS
May-2013	Full 7+8 TeV dataset: VH, H -> bb	TWiki, PAS
May-2013	Full 8 TeV dataset: H -> WW -> InuJ	TWiki, PAS
May-2013	Full 7+8 TeV dataset: H -> ZZ -> 2l2nu	TWiki, PAS
Apr-2013	Moriond Higgs Combination	TWiki, PAS
Mar-2013	Full 7+8 TeV dataset: H -> gamma gamma	TWiki, PAS
Mar-2013	Full 7+8 TeV dataset: H -> ZZ -> 4I	TWiki, PAS
Mar-2013	Full 7+8 TeV dataset: H -> WW -> 2l2nu	TWiki, PAS
Mar-2013	Full 7+8 TeV dataset: H -> tau tau	TWiki, PAS
Mar-2013	Full 7+8 TeV dataset: H -> Z gamma	TWiki, PAS
Mar-2013	Full 7+8 TeV dataset: H -> WWW -> 3l3nu	TWiki, PAS
Mar-2013	Full 7+8 TeV dataset: VH -> tau tau	TWiki, PAS

- Present a coherent view of present-day results of Higgs properties from the LHC and Tevatron experiments.
 - Any omission or mistake are the speaker's fault.

Looking up to a new boson

[http://cern.ch/go/q8jx]

a.david@cern.ch LHC Physics 2013

9

10

Higgsdependence day recap

[http://cern.ch/go/q8jx]

CERN

From the other side of the pond

[arXiv:1207.6436]

2.8 σ local significance at m_H=125 GeV.

A 2012 hit

[http://goo.gl/49c0c] [http://goo.gl/suJzZ] [http://goo.gl/ShJJG]

Symmetry of particle physics

departments 👳 science topics 👳 image bank 🛛 pdf issues 🔅 archives

signal to background May 12, 2013 The top 40 physics hits of 2012

The Higgs boson is a popular subject among the most-cited physics papers of 2012, but a particle simulation manual takes the top spot.

2012 reports for eprints

1. 568 citations in 2012 Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC ATLAS Collaboration (Georges Aad (Freiburg U.) et al.). Jul 2012. 24 pp. Published in Phys.Lett. B716 (2012) 1-29 CERN-PH-EP-2012-218 DOI: 10.1016/j.physletb.2012.08.020 e-Print: arXiv:1207.7214 [hep-ex] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service: Link to all figures including auxiliary figures

2. 558 citations in 2012 Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC CMS Collaboration (Serguei Chatrchyan (Yerevan Phys. Inst.) et al.). Jul 2012. Published in Phys.Lett. B716 (2012) 30-61 CMS-HIG-12-028, CERN-PH-EP-2012-220 DOI: 10.1016/j.physletb.2012.08.021 e-Print: arXiv:1207.7235 [hep-ex] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote CERN Document Server : ADS Abstract Service: Link to PRESSRELEASE

3. <u>433</u> citations in 2012 Combined results of searches for the standard model Higgs boson in \$pp\$ collisions at \$\sqrt{s}=7\$ TeV CMS Collaboration (Serguei Chatrchyan (Yerevan Phys. Inst.) et al.), Feb 2012. Published in Phys.Lett. B710 (2012) 26-48 CMS-HIG-11-032, CERN-PH-EP-2012-023 DOI: 10.1016/j.physletb.2012.02.064 e-Print: arXiv:1202.1488 [hep-ex] | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote CERN Document Server ; ADS Abstract Service

4. 381 citations in 2012 Combined search for the Standard Model Higgs boson using up to 4.9 fb\$^{-1}\$ of \$pp\$ collision data at \$\sqrt{s}=7\$ TeV with the ATLAS detector at the LHC ATLAS Collaboration (Georges Aad (Freiburg U.) et al.). Feb 2012. 8 pp. Published in Phys.Lett. B710 (2012) 49-66 CERN-PH-EP-2012-019 DOI: 10.1016/j.physletb.2012.02.044 e-Print: arXiv:1202.1408 [hep-ex] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote CERN Document Server ; ADS Abstract Service, Link to all figures including auxiliary figures

All Scien Science AAAS.ORG | FEEDBACK | HELP | LIBRARIANS AAAS NEWS SCIENCE JOURNALS CAREERS BLOGS & COMM Subject Collections Online Extras Science Special Collections Archived Collections

Home > Collections > Online Extras > Special Issues 2012 > Breakthrough of the Year, 2012

Breakthrough of the Year, 2012

Every year, crowning one scientific achievement as Breakthrough of the Year is no easy task, and 2012 was no exception. The year saw leaps and bounds in physics, along with significant advances in genetics, engineering, and many other areas. In keeping with tradition, Science's editors and staff have selected a winner and nine runners-up, as well as highlighting the year's top news stories and areas to watch in 2013.

FREE ACCESS The Discovery of the Higgs Boson A. Cho

Exotic particles made headlines again and again in 2012, making it no surprise that the breakthrough of the year is a big physics finding: confirmation of the existence of the Higgs boson. Hypothesized more than 40 years ago, the elusive particle completes the standard model of physics, and is arguably the key to the explanation of how other fundamental particles obtain mass. The only mystery that remains is whether its discovery marks a new dawn for particle physics or the final stretch of a field that has run its course.

Read more about the Higgs boson from the research teams at CERN.

Runners-Up FREE WITH REGISTRATION

This year's runners-up for Breakthrough of the Year underscore feats in engineering, genetics, and other fields that promise to change the course of science.

Curiosity Landing

Eggs from Stem Cells

a.david@cern.ch LHC Physics 2013

ENCODE

	TIME Person of the Year	1	・ S+ t ふ App
Magazine Video LIFE Person of the Ye			
	2012 2011 2010 2009 2008		
Who Should Be TIME's Person of t	the Year 2012? >	WHO SHOULD BE TIM YEAR 2012?	E'S PERSON OF THE
As always, TIME's editors will choose the Person of the Year Cast your vote for the person you think most influenced the I am on Dec. 12 and the winner will be approved on Dec	r, but that doesn't mean readers shouldn't have their say. news this year for better or worse. Voting closes at 11:59 14	The Candidates Video	
Image: State of the second s	re 7	Poll Results	
The Higgs Boson	18 of 40	PAST PERSONS OF TH	IE YEAR
By Jeffrey Kluger Monday, Nov. 26, 2012		n 🔁 🖓 🖓	
	What do you think?	(e) 2 (c) 1	
	Should The Higgs Boson be TIME's Person of the Year 2012?	2011: The Protester	2010: Facebook's Mark Zuckerberg
			E.
	Take a moment to thank this little particle for all the		
	work it does, because without it, you'd be just inchoate energy without so much as a bit of mass.	2009: Ben Bernanke	2008: Barack Oban
	What's more, the same would be true for the entire universe. It was in the 1960s that Scottish physicist Peter Higgs first posited the existence of a particle	Most Bead Mo	et
	that causes energy to make the jump to matter. But it was not until last summer that a team of researchers	Emai	led
· Sex Ment	at Europe's Large Hadron Collider — Rolf Heuer, Joseph Incandela and Fabiola Gianotti — at last	1 Who Should Be TIME	's Person of the Year 2012?
	confirmed Einstein's general theory of relativity. The Higgs — as particles do — immediately decayed to	the Face of AIDS	re: me moto mat Unangeo

SSPL/GETTY IMAGES

Simulation of a Higgs-Boson decaying into four muons, CERN, 1990.

13

Photos: Step inside the Large Hadron Collider.

more-fundamental particles, but the scientists

would surely be happy to collect any honors or

awards in its stead.

Coffee Chain's Long-Term Strategy

3 Nativity-Scene Battles: Score One for the Atheists

4 The \$7 Cup of Starbucks: A Logical Extension of the

Timeline of the results

The build up of a signal

16

Interesting $H \rightarrow \gamma \gamma$ comparisons

VI Workshop Italiano sulla Fisica p-p a LHC

Interesting $H \rightarrow \gamma \gamma$ comparisons

18 [http://cern.ch/go/lc9j]

VI Workshop Italiano sulla Fisica p-p a LHC

Where we stand today

19

Significance Obs. (pre-fit exp.)	H→ZZ	$ extsf{H} \longrightarrow \gamma \ \gamma$	H→WW	H→bb	$H \rightarrow \tau \ au$
ATLAS	6.6 <i>σ</i> (4.4 <i>σ</i>)	7.4 σ (4.1 σ)	2.5σ (1.6σ)	-0.4 σ (1.0σ)	1.1 σ (1.7 σ)
	124.3 GeV	126.8 GeV		125 GeV	
CMS	6.7 σ (7.1 σ)	3.9 σ (4.2 σ)	3.9 σ (5.6 σ)	2.0 σ (2.1 σ)	2.8 σ (2.7 σ)
			125.7 GeV		

Combined p-values <10⁻²⁰ are telling us to make measurements...

20

Statistics interlude

[ATL-PHYS-PUB-2011-11, CMS NOTE-2011/005]

	Test statistic	Profiled?	Test statistic sampling
LEP	$q_{\mu} = -2 \ln rac{\mathcal{L}(data \mu, ilde{ heta})}{\mathcal{L}(data 0, ilde{ heta})}$	no	Bayesian-frequentist hybrid
Tevatron	$q_{\mu} \;=\; -2\lnrac{\mathcal{L}(data \mu,\hat{ heta}_{\mu})}{\mathcal{L}(data 0,\hat{ heta}_{0})}$	yes	Bayesian-frequentist hybrid
LHC	$\widetilde{q}_{\mu} \;=\; -2\lnrac{\mathcal{L}(data \mu,\hat{ heta}_{\mu})}{\mathcal{L}(data \hat{\mu},\hat{ heta})}$	$yes (0 \le \hat{\mu} \le \mu)$	frequentist

- **LEP:** nuisances parameters (θ) kept at nominal values (~).
- Tevatron: maximise likelihood against nuisances (^).
 - Denominator considers **background-only hypothesis** ($\mu = 0$).
- □ **LHC**: frequentist profiled likelihood.
 - Denominator considers global best-fit likelihood with floating signal strength.
 - Nice asymptotic properties, savings in computational power.

Measuring the mass

21

Naïve average: 125.6 ±0.4 GeV

CÉRN

Combinations of the high-resolution channels.

More on ATLAS mass

- Slight difference in ATLAS results:
 Δm = 2.3 ^{+0.6}_{-0.7}(stat.) ±0.6(syst.) GeV
 2.4σ (p=1.5%)
- Using more conservative energy scale uncertainties: 1.8σ (p=8%).

Where we stand today – with cookery

24

Significance Obs. (pre-fit exp.)	H→ZZ	$ extsf{H} \longrightarrow \gamma \ \gamma$	H→WW	H→bb	$H \longrightarrow T T$
ATLAS	μ=1.5±0.4 ~3.8 σ (~2.5 σ)	μ=1.6±0.3 ~5.3 σ (~3.3 σ)	2.5σ (1.6σ)	-0.4 σ (1.0σ)	1.1 σ (1.7 σ)
	125.5 GeV		125 GeV		
CMS	6.7 σ (7.1 σ)	3.9 σ (4.2 σ)	3.9 σ (5.6 σ)	2.0 σ (2.1 σ)	2.8 σ (2.7 σ)
			125.7 GeV		

Combined p-values <10⁻²⁰ are telling us to make measurements...

Spin is so much more than a number

[arXiv:1208.4018]

25

□ The spin-2 amplitude has many (higher-order) terms:

$$\begin{aligned} A(X \to V_{1}V_{2}) &= \Lambda^{-1} \left[2g_{1}^{(2)}t_{\mu\nu}f^{*(1)\mu\alpha}f^{*(2)\nu\alpha} + 2g_{2}^{(2)}t_{\mu\nu}\frac{q_{\alpha}q_{\beta}}{\Lambda^{2}}f^{*(1)\mu\alpha}f^{*(2)\nu\beta} + g_{3}^{(2)}\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}t_{\beta\nu}\left(f^{*(1)\mu\nu}f^{*(2)}_{\mu\alpha} + f^{*(2)\mu\nu}f^{*(1)}_{\mu\alpha}\right) \\ &+ g_{4}^{(2)}\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*(1)\alpha\beta}f^{*(2)}_{\alpha\beta} + m_{V}^{2}\left(2g_{5}^{(2)}t_{\mu\nu}\epsilon^{*\mu}\epsilon^{*\nu}_{2} + 2g_{6}^{(2)}\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}\left(\epsilon^{*\nu}\epsilon^{*\alpha}_{2} - \epsilon^{*\alpha}_{1}\epsilon^{*\nu}\epsilon^{*\nu}_{2}\right) + g_{7}^{(2)}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}\epsilon^{*}_{1}\epsilon^{*}_{2}\right) \\ &+ g_{8}^{(2)}\frac{\tilde{q}_{\mu}\tilde{q}_{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*(1)\alpha\beta}\tilde{f}^{*(2)}_{\alpha\beta} + m_{V}^{2}\left(g_{9}^{(2)}\frac{t_{\mu\alpha}\tilde{q}^{\alpha}}{\Lambda^{2}}\epsilon_{\mu\nu\rho\sigma}\epsilon^{*\nu}_{1}\epsilon^{*\rho}_{2}q^{\sigma} + \frac{g_{10}^{(2)}t_{\mu\alpha}\tilde{q}^{\alpha}}{\Lambda^{4}}\epsilon_{\mu\nu\rho\sigma}q^{\rho}\tilde{q}^{\sigma}\left(\epsilon^{*\nu}_{1}(q\epsilon^{*}_{2}) + \epsilon^{*\nu}_{2}(q\epsilon^{*}_{1})\right)\right)\right], \tag{18}$$

Spin is so much more than a number

[arXiv:1208.4018]

□ The spin-2 amplitude has many (higher-order) terms:

- □ Keep only dim-4 terms $(g_1 = g_5 \neq 0)$:
 - Graviton-like "couplings" (2⁺_m).

J^P: a simplified picture

[arXiv:1208.4018]

- Until there is enough data, perform pairwise hypothesis tests against SMH (0⁺).
- Select models using simplifying assumptions on amplitudes:
 O⁻ (parity) "from" ZZ.
 - 2^+_m (graviton-like minimal couplings) also "from" WW and $\gamma \gamma$.

scenario	$X \to ZZ$	$X \to WW$	$X\to\gamma\gamma$
0_m^+ vs background	l 5.0	5.0	5.0
$0^+_m ext{ vs } 0^+_h$	1.7	1.1	0.0
$0_m^+ { m vs} { m 0}^-$	2.9	1.2	0.0
$0_m^+ { m vs} 1^+$	1.9	2.0	_
$0^+_m { m ~vs~} 1^-$	2.6	3.2	_
$0_m^+ \text{ vs } 2_m^+$	1.5	2.8	2.4
$0_m^+ ext{ vs } 2_h^+$	${\sim}5$	1.1	3.1
$0^+_m ext{ vs } 2^h$	~ 5	2.5	3.1

[ATLAS-CONF-2013-013] [CMS-PAS-HIG-13-003]

- Discriminants built from decay angles and invariant masses.
- Profiled likelihood ratio test statistic.
 - CL_s criterion protects against fluctuations from null hypothesis.

CLs

a.david@cern.ch LHC Physics 2013

28

Other J^P in $H \rightarrow ZZ \rightarrow 4\ell$

CÉRN 29

[ATLAS-CONF-2013-013] [CMS-PAS-HIG-13-003]

1	es	0.6 _F	
	Entri	0.5 $H \rightarrow ZZ^{(1)} \rightarrow 4I$ Signal hypothesis	a thesis
		0.4 $f_{s} = 7 \text{ TeV: } \int Ldt = 4.6 \text{ fb}^{-1}$ $(m_{H} = 125 \text{ G})^{-1}$ $f_{s} = 8 \text{ TeV: } \int Ldt = 20.7 \text{ fb}^{-1}$ $J_{H_{0}}^{P}$	sev) = 0*
		0.3	= 2 ⁺ _m
		0.2	
		0.1	
1 5 \		0 -15 -10 -5 0 5 1 log(1/H)	0 15
,		og(=("o	

H _k = 0 H _k = 0 10 15 H ₀ //L(H ₁))	0.15 0.15 0.05 0.55 -10 -5	- J ⁴ ₁ = 1 ⁺ - J ⁴ ₁ = 1 ⁺ 0 5 10 15 log(L(H ₀)/L(H ₁))	0.3 0.2 0.1 0.1 0.1 0.1	0 5 10 15 log(L(H _q))L(H _q)	
	JI	² -MELA an	alysis		
	tested I^P fo	r tes	sted 0^+ for		

		0, +	- 1· us		2 ₁₀ (qq) 0
J^P	production	expect (µ=1)	obs. 0 ⁺	obs. J^P	CL _s
0-	$gg \rightarrow X$	2.6 <i>σ</i> (2.8 <i>σ</i>)	0.5 <i>o</i>	3.3 <i>o</i>	0.16%
$ 0_{h}^{+}$	$gg \rightarrow X$	1.7σ (1.8σ)	0.0σ	1.7σ	8.1%
2^{+}_{mgg}	$gg \rightarrow X$	1.8σ (1.9σ)	0.8σ	2.7 <i>o</i>	1.5%
$2^{+}_{mq\bar{q}}$	$q\bar{q} \rightarrow X$	1.7σ (1.9σ)	1.8σ	4.0σ	<0.1%
1-	$q\bar{q} \rightarrow X$	2.8σ (3.1σ)	1.4σ	>4.00	<0.1%
1+	$q\bar{q} \rightarrow X$	2.3 <i>σ</i> (2.6 <i>σ</i>)	1.7 <i>o</i>	>4.00	<0.1%

nary 15 = 7 TeV, L = 5.1 fb¹ 15 = 8 TeV, L = 19.6 fb¹

0+

1

- CMS data

-2×In(L, / L,)

10 20 30

30

0*

1*

- CMS data

Ś

ĕ 0.12

Ps 0.08

2

periment

0.14

0.1

0.06

0.04

0.02

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

05--30

-20 -10 0

230

-20 -10 0 10 20

CMS or

0.

0.08

0.04

0.02

0.12

0.1

0.08

0.06

0.04

0.02

230

-20 -10 0

030

-20 -10 0 10 20 30

CMS preliminary (5 = 7 TeV, L = 5.1 fb⁻¹ (5 = 8 TeV, L = 19.6 fb⁻¹ 0.14

ents

ğ

Psel 0.06

ts

inary 15 = 7 TeV, L = 5.1 fb¹ 15 = 8 TeV, L = 19.6 fb¹

CMS preliminary (\$=7 TeV, L = 5.1 fb) (\$=8 TeV, L = 19.6 fb)

0*

0⁺

-CMS data

10 20 30 -2×ln(L, / L_o)

30

0*

0

-CMS data

10 20 30 -2×In(L₀ / L₀)

30

0.1

0.08

0.06

0.04

0.02

0.14

0.12

0.1

0.06

0.04

0.02

030

-10

0

-20

930 -20 -10 0

oexpe

experiments 0.16F

PIID

ň 0.08 CMS preliminary $\sqrt{s} = 7$ TeV; L = 5.1 fs⁻¹ \sqrt{s} = 8 TeV; L = 19.6 fs⁻¹

0+

2⁺(gg)

-CMS data

-2×ln(L_{2*(99)} / L₀.)

0*

2⁺(qq)

-CMS data

10 20 30 -2×ln(L / L)

30

CMS preliminary fs = 7 TeV; L = 5.1 fb⁺ fs = 8 TeV, L = 19.6 fb⁺

		tested J^{P} for		tested 0 ⁺ for		Г
		an assumed 0 ⁺		an assumed J^P	CLS	
		expected	observed	observed*		
0-	p 0	0.0011	0.0022	0.40	0.004	
1+	p 0	0.0031	0.0028	0.51	0.006	
1-	p 0	0.0010	0.027	0.11	0.031	
2_{m}^{+}	p 0	0.064	0.11	0.38	0.182	
2-	p_0	0.0032	0.11	0.08	0.116	

	ATLAS		CMS	
CL _s for J≠0	< 18.2%		< 1.5%	
		a.david@cern.ch	LHC Physics 2013	

ATLAS: focus on 2^+_m

30 [ATLAS-CONF-2013-040]

a.david@cern.ch LHC Physics 2013

f_{aā} [%]

Oversimplified big picture

i — Tevatron; A	- ATLAS; C-	CMS; recent	results in red	١.
-----------------	-------------	-------------	----------------	----

★ "seen" ★ "tried" 'impossible"	H→bb		b	H-	$ ightarrow extsf{ au}$	τ	H→WW			H→ZZ			$H \rightarrow \gamma \gamma$			$H \rightarrow Z \gamma$			H	→in	۱۷.	H-	$ ightarrow \mu$	μ	H→cc H→HH			
1	Т	А	С	T	А	С	T	А	С	T	А	С	Т	А	С	Т	А	С	Т	А	С	Т	А	С	Т	А	С	
ggH	-	-	-	☆	☆	*	☆	*	*	☆	*	*	☆	*	*	-	☆	☆				-	☆		-			
VBF			☆	☆	☆	*		*	*		*	☆		*	☆	-						-			-			
VH	★	☆	*	☆		☆	☆		☆		☆			☆	☆	-				☆		-			-			
ttH		☆	☆	☆			☆								☆	-						-			-			

□ Still much to explore on the rarer ends.

(to the right and to the bottom)

[CMS-PAS-HIG-13-011]

32

- Neural network event classifier.
- Simultaneous m_{bb} fits to 4 ANN categories.
- □ At m_H=125 GeV, μ < 3.6 (3.0) (95%CL), obs.(exp.) or μ = 0.7 ±1.4.

35% Asymptotic CL Limit on σ / σ_{SM}

[ATLAS-CONF-2013-010]

 Probe coupling to second-generation fermions. Events / Ge

Data / SM

- Clean final state.
- BR < 10⁻⁴ in the search range.

 At m_H=125 GeV, μ < 9.8 (8.2) (95%CL), obs.(exp.).

[CMS-PAS-HIG-13-015]

34

- Tagging of leptonic and hadronic
 W decays from top (anti-)quarks.
- □ At m_{H} =125 GeV, μ < 5.4 (5.3) (95%CL), obs.(exp.).

[ATLAS-CONF-2013-009] [CMS-PAS-HIG-13-006]

Obs. (exp.)

 μ at 125 GeV (95% CL)

Oversimplified big picture

36

T - Tevatron; A - ATLAS; C - CMS;	combination drivers in red.
-----------------------------------	-----------------------------

★ "seen" ★ "tried" 'impossible"	★ "seen" ★ "tried" impossible" qq		b	H-	→ 7	τ	H→WW			H→ZZ			$H \rightarrow \gamma \gamma$			$H \rightarrow Z \gamma$			H→inv.			H-	→ µ	μ	H→cc H→HH			
1	Т	А	С	T	А	С	Т	А	С	т	А	С	Т	А	С	Т	А	С	т	А	С	Т	А	С	Т	А	С	
ggH	-	-	-	☆	☆	*	☆	*	*	☆	*	*	☆	*	*	-	☆	☆				-	☆		-			
VBF			☆	☆	☆	*		*	*		*	☆		*	☆	-						-			-			
VH	*	☆	*	☆		☆	☆		☆		☆			☆	☆	-				☆		-			-			
ttH		☆	☆	☆			☆								☆	-						-			-			

□ Still much to explore on the rarer ends.

(to the right and to the bottom)
Relative signal strengths

<u>ح</u>

[arXiv:1303.6346] [ATLAS-CONF-2013-034] [CMS-PAS-HIG-13-005]

	Tevatron	ATLAS	CMS
m _H	125 GeV	125.5 GeV	125.7 GeV
μ = σ/σ _{SM}	1.44 ^{+0.59} -0.56	1.30 ±0.20	0.80 ±0.14
		Naïve average: 0.98 ±0.11	

CMS: channel compatibility

CERN

39

Production mechanisms

Scale fermion-mediated (ggH & ttH) and vector-boson-mediated (VBF & VH) together.

CERN

40

Production mechanisms

[ATLAS-CONF-2013-034] [CMS-PAS-HIG-13-005]

 Ratio of production scaling factors does not depend on decay mode.

Combined > 3 σ evidence for $\mu_{VBF,VH} / \mu_{ggH,ttH}$ > 0.

Interim scalar coupling deviations

(CÈRN)

42

framework

Detectable decay modes Currently undetectable decay modes Production modes $\frac{\sigma_{\rm ggH}}{\sigma_{\rm ggH}^{\rm SM}} \ = \ \left\{ \begin{array}{cc} \kappa_{\rm g}^2(\kappa_{\rm b},\kappa_{\rm t},m_{\rm H}) & ~~ \Gamma_{\rm WW^{(*)}} \\ \kappa_{\rm g}^2 & ~~ \Gamma_{\rm WW^{(*)}}^{\rm SM} \end{array} \right. = \ \kappa_{\rm W}^2$ $\frac{\Gamma_{t\bar{t}}}{\Gamma^{SM}_{t\bar{t}}} \ = \ \kappa^2_t$ $\frac{\sigma_{\rm VBF}}{\sigma_{\rm VBF}^{\rm SM}} = \kappa_{\rm VBF}^2(\kappa_{\rm W}, \kappa_{\rm Z}, m_{\rm H}) \qquad \frac{\Gamma_{\rm ZZ^{(*)}}}{\Gamma_{\rm ZZ^{(*)}}^{\rm SM}} = \kappa_{\rm Z}^2$ $\frac{\Gamma_{gg}}{\Gamma_{gg}^{SM}} \quad : \quad \text{see Section 3.1.2}$ $= \kappa_W^2$ $\frac{\Gamma_{c\overline{c}}}{\Gamma_{c\overline{c}}^{\underline{SM}}} \ = \ \kappa_t^2$ $\overline{\sigma_{\rm WH}^{\rm SM}}$ $\frac{\Gamma_{b\overline{b}}}{\Gamma_{b\overline{b}}^{SM}} \ = \ \kappa_b^2$ $rac{\sigma_{
m ZH}}{\sigma_{
m ZH}^{
m SM}}$ $= \kappa_Z^2$ $\frac{\Gamma_{s\bar{s}}}{\Gamma^{SM}_{s\bar{s}}} \ = \ \kappa^2_b$ $\frac{\Gamma_{\tau^-\tau^+}}{\Gamma^{SM}_{\tau^-\tau^+}} \ = \ \kappa_\tau^2$ $rac{\sigma_{
m tar t H}}{\sigma_{
m tar t H}^{
m SM}} ~=~ \kappa_{
m t}^2$ $\frac{\Gamma_{_{\gamma\gamma}}}{\Gamma^{SM}_{_{\gamma\gamma}}} = \begin{cases} \kappa^2_{_{\gamma}}(\kappa_{_{\rm b}},\kappa_{_{\rm t}},\kappa_{_{\rm T}},\kappa_{_{\rm W}},m_{_{\rm H}}) & \frac{\Gamma_{_{\mu}-_{\mu}+}}{\Gamma^{SM}_{_{\mu}-_{\mu}+}} = \kappa^2_{_{\tau}} \end{cases}$ $\frac{\Gamma_{Z\gamma}}{\Gamma_{Z\gamma}^{SM}} = \begin{cases} \kappa_{(Z\gamma)}^{2}(\kappa_{\rm b}, \kappa_{\rm t}, \kappa_{\rm \tau}, \kappa_{\rm W}, m_{\rm H}) & \text{Total width} \\ \kappa_{(Z\gamma)}^{2} & \frac{\Gamma_{\rm H}}{\Gamma_{\rm H}^{SM}} = \begin{cases} \kappa_{\rm H}^{2}(\kappa_{i}, m_{\rm H}) \\ \kappa_{\rm H}^{2} \end{cases}$

□ Narrow-width approximation: ($\sigma \times BR$) = $\sigma \cdot \Gamma / \Gamma_H$

Interim scalar coupling deviations framework

43

CÉRN

Contributions resolved at NLO QCD and LO EWK.
 Peg the unmeasured to "closest of kin".

Probing custodial symmetry

[arXiv:1209.0040]

	Probi	ng custodial symmetry assuming no invisible o	or undetectable wid	ths					
2	Free parameters: κ_Z , $\lambda_{WZ} (= \kappa_W / \kappa_Z)$, $\kappa_f (= \kappa_t = \kappa_b = \kappa_t)$.								
2	J	${ m H} ightarrow \gamma\gamma$	$\mathrm{H} \to \mathrm{ZZ}^{(*)}$	${ m H} ightarrow { m WW}^{(*)}$	$H \rightarrow b\overline{b}$ $H \rightarrow \tau^{-}\tau^{+}$				
	ggH	$\kappa_{\rm f}^2 \cdot \kappa_{\gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm Z}\lambda_{\rm WZ})$	$\kappa_f^2 \cdot \kappa_Z^2$	$\kappa_f^2 \cdot (\kappa_Z \lambda_{WZ})^2$	$\kappa_f^2 \cdot \kappa_f^2$				
	$t\overline{t}H$	$\kappa_{ m H}^2(\kappa_i)$	$\kappa_{ m H}^2(\kappa_i)$	$\kappa_{ m H}^2(\kappa_i)$	$\kappa_{ m H}^2(\kappa_i)$				
	VBF	$\kappa_{\rm VBF}^2(\kappa_{\rm Z},\kappa_{\rm Z}\lambda_{\rm WZ})\cdot\kappa_{\gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm Z}\lambda_{\rm WZ})$	$\kappa_{\rm VBF}^2(\kappa_{\rm Z},\kappa_{\rm Z}\lambda_{\rm WZ})\cdot\kappa_{\rm Z}^2$	$\frac{\kappa_{\rm VBF}^2(\kappa_{\rm Z},\kappa_{\rm Z}\lambda_{\rm WZ})\cdot(\kappa_{\rm Z}\lambda_{\rm WZ})^2}{2}$	$\kappa_{\rm VBF}^2(\kappa_{\rm Z},\kappa_{\rm Z}\lambda_{\rm WZ})\cdot\kappa_{\rm f}^2$				
		$\kappa_{\rm H}^2(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$	$\kappa_{\rm H}^{\rm e}(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$				
	WH	$\frac{(\kappa_{\rm Z}\lambda_{\rm WZ})^2 \cdot \kappa_{\gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm Z}\lambda_{\rm WZ})}{\kappa_{\gamma}^2(\kappa_{\rm c})}$	$\frac{(\kappa_Z \lambda_{WZ})^2 \cdot \kappa_Z^2}{\kappa_Z^2 (\kappa_Z)}$	$\frac{(\kappa_Z \lambda_{WZ})^2 \cdot (\kappa_Z \lambda_{WZ})^2}{r^2 (r_z)}$	$\frac{(\kappa_Z \lambda_{WZ})^2 \cdot \kappa_f^2}{r^2 (r_c)}$				
		$r_{\rm H}(\kappa_i)$	x ² .x ²	$r_{\rm H}^2 (r_{\rm a})^2$	$\frac{\kappa_{\rm H}^2(\kappa_i)}{\kappa_{\rm Z}^2 \cdot \kappa_{\rm f}^2}$				
	ZH	$\frac{\kappa_Z \kappa_\gamma (\kappa_1,\kappa_1,\kappa_1,\kappa_2,\kappa_WZ)}{\kappa_H^2(\kappa_i)}$	$\frac{\kappa_{\rm Z} \kappa_{\rm Z}}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_Z^2(\kappa_Z,\kappa_WZ)}{\kappa_H^2(\kappa_i)}$					
\bigcirc	Probing custodial symmetry without assumptions on the total width								
	Free parameters: $\kappa_{ZZ} (= \kappa_Z \cdot \kappa_Z / \kappa_H), \lambda_{WZ} (= \kappa_W / \kappa_Z), \lambda_{FZ} (= \kappa_f / \kappa_Z).$								
ATLAS		${ m H} ightarrow \gamma\gamma$	$H \to ZZ^{(*)}$	${ m H} ightarrow { m WW}^{(*)}$	$H \rightarrow b\overline{b}$ $H \rightarrow \tau^- \tau^+$				
	ggH	$r^2 \lambda^2 - r^2 (\lambda r g \lambda r g \lambda r g \lambda r g)$	$r^2 \lambda^2$	$r^2 \lambda^2 \dots \lambda^2$	$r^2 \lambda^2 \dots \lambda^2$				
	$t\overline{t}H$	$\mathbb{Z}_{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb$	[™] ZZ [™] FZ	KZZNFZ NWZ	$\kappa_{ZZ}\kappa_{FZ}\cdot\kappa_{FZ}$				
	VBF	$\kappa_{\mathrm{ZZ}}^2\kappa_{\mathrm{VBF}}^2(1,\lambda_{\mathrm{WZ}}^2)\cdot\kappa_{\gamma}^2(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	$\kappa^2_{ m ZZ}\kappa^2_{ m VBF}(1,\lambda^2_{ m WZ})$	$\kappa^2_{ m ZZ}\kappa^2_{ m VBF}(1,\lambda^2_{ m WZ})\cdot\lambda^2_{ m WZ}$	$\kappa^2_{ m ZZ}\kappa^2_{ m VBF}(1,\lambda^2_{ m WZ})\cdot\lambda^2_{FZ}$				
	WH	$\kappa^2_{ m ZZ}\lambda^2_{ m WZ}\cdot\kappa^2_{\gamma}(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{ m WZ})$	$\kappa^2_{ m ZZ} \cdot \lambda^2_{ m WZ}$	$\kappa^2_{ m ZZ}\lambda^2_{ m WZ}\cdot\lambda^2_{ m WZ}$	$\kappa^2_{ m ZZ} \lambda^2_{ m WZ} \cdot \lambda^2_{FZ}$				
	ZH	$\kappa_{\mathrm{ZZ}}^2 \cdot \kappa_{\gamma}^2(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	$\kappa_{\rm ZZ}^2$	$\kappa^2_{ m ZZ} \cdot \lambda^2_{ m WZ}$	$\kappa^2_{ZZ}\cdot\lambda^2_{FZ}$				

44

CERN

Probing custodial symmetry

[arXiv:1303.6346] [ATLAS-CONF-2013-034] [CMS-PAS-HIG-13-005]

[arXiv:1209.0040]

46

	Boson and fermion scaling assuming no invisible or undetectable widths						
Free parameters: $\kappa_{\rm V} (= \kappa_{\rm W} = \kappa_{\rm Z}), \kappa_{\rm f} (= \kappa_{\rm t} = \kappa_{\rm b} = \kappa_{\rm r}).$							
<u> </u>		$\mathrm{H}\to\gamma\gamma$	$H \rightarrow ZZ^{(*)} \mid H \rightarrow WW^{(*)}$	$ H \rightarrow b\overline{b} H \rightarrow \tau^{-}\tau^{+}$			
	$\begin{array}{c c} ggH \\ t\overline{t}H \\ \hline \\ WBF \\ WH \\ ZH \\ \end{array} \\ \begin{array}{c} \kappa_{f}^{2} \cdot \kappa_{\gamma}^{2}(\kappa_{f},\kappa_{f},\kappa_{f},\kappa_{V}) \\ \kappa_{H}^{2}(\kappa_{i}) \\ \hline \\ \kappa_{V}^{2} \cdot \kappa_{\gamma}^{2}(\kappa_{f},\kappa_{f},\kappa_{f},\kappa_{V}) \\ \kappa_{H}^{2}(\kappa_{i}) \\ \hline \end{array}$		$rac{\kappa_{ m f}^2\cdot\kappa_{ m V}^2}{\kappa_{ m H}^2(\kappa_i)}$	$\frac{\kappa_{\rm f}^2 \cdot \kappa_{\rm f}^2}{\kappa_{\rm H}^2(\kappa_i)}$			
			$rac{\kappa_{ m V}^2\cdot\kappa_{ m V}^2}{\kappa_{ m H}^2(\kappa_i)}$	$\frac{\kappa_{\rm V}^2 \cdot \kappa_{\rm f}^2}{\kappa_{\rm H}^2(\kappa_i)}$			

Weak bosons and fermions

[arXiv:1303.6346] [ATLAS-CONF-2013-034] [CMS-PAS-HIG-13-005]

	Tevatron	ATLAS	CMS
P(SM)	-	8%	< 1 <i>o</i>

Weak bosons and fermions

[ATLAS-CONF-2013-034] [CMS-PAS-HIG-13-005]

a.david@cern.ch LHC Physics 2013

48

Looking for new particles

[arXiv:1209.0040]

49

CERN

50

Кg

Looking for new particles in loops

[ATLAS-CONF-2013-034] [CMS-PAS-HIG-13-005]

-0.13	0.97 ± 0.10
1.08 ±0.14	0.83 ±0.11

Looking for new particles

[ATLAS-CONF-2013-034] [CMS-PAS-HIG-13-005]

51

52

$ZH \rightarrow \ell \ell + invisible$

Events / 30 GeV

[ATLAS-CONF-2013-011]

- □ MET > 90 GeV.
- D sideband on:
 - $\square |\mathsf{MET-p}_{\mathsf{T}}^{\ell\ell}| / \mathsf{p}_{\mathsf{T}}^{\ell\ell}$
 - $\Box \Delta \Phi (MET, p \overrightarrow{T}^{miss.})$
- □ Not yet sensitive to standard candle: ZH→ZZZ→2 ℓ 4 ν
- At m_H=125 GeV, BR_{inv.} < 0.65 (0.84) (95%CL), obs.(exp.).

A further take on loops

Probing the fermion sector

[arXiv:1209.0040]

		u-type	d-type	lepton	
	Ι	$rac{\cos lpha}{\sin eta}$	$rac{\cos lpha}{\sin eta}$	$rac{\cos lpha}{\sin eta}$	SM-like
X	I'	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{-\sin\alpha}{\cos\beta}$	
2HI	II	$\frac{\cos \alpha}{\sin \beta}$	$\frac{-\sin\alpha}{\cos\beta}$	$\frac{-\sin \alpha}{\cos \beta}$	
	II'	$\frac{\cos \alpha}{\sin \beta}$	$\frac{-\sin\alpha}{\cos\beta}$	$\left(\frac{\cos\alpha}{\sin\beta}\right)$	

Probing up-type and down-type fermion symmetry
assuming no invisible or undetectable widthsFree parameters: $\kappa_V (= \kappa_Z = \kappa_W), \lambda_{du} (= \kappa_d / \kappa_u), \kappa_u (= \kappa_t).$ $H \rightarrow \gamma\gamma$ $H \rightarrow \gamma\gamma$ $H \rightarrow ZZ^{(*)}$ $H \rightarrow b\overline{b}$ $H \rightarrow \gamma\gamma$ $H \rightarrow VY$ $H \rightarrow VY$ χ^2 χ^2 </t

IVIS	ggH	$\frac{\kappa_{\rm g}^2(\kappa_{\rm u}\lambda_{\rm du},\kappa_{\rm u})\cdot\kappa_{\gamma}^2(\kappa_{\rm u}\lambda_{\rm du},\kappa_{\rm u},\kappa_{\rm u}\lambda_{\rm du},\kappa_{\rm V})}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_{\rm g}^2(\kappa_{\rm u}\lambda_{\rm du},\kappa_{\rm u})\cdot\kappa_{\rm V}^2}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_{\rm g}^2(\kappa_{\rm u}\lambda_{\rm du},\kappa_{\rm u})\cdot(\kappa_{\rm u}\lambda_{\rm du})^2}{\kappa_{\rm H}^2(\kappa_i)}$
	$t\bar{t}H$	$\frac{\kappa_{\mathrm{u}}^2 \cdot \kappa_{\mathrm{\gamma}}^2(\kappa_{\mathrm{u}} \lambda_{\mathrm{du}}, \kappa_{\mathrm{u}}, \kappa_{\mathrm{u}} \lambda_{\mathrm{du}}, \kappa_{\mathrm{V}})}{\kappa_{\mathrm{H}}^2(\kappa_i)}$	$\frac{\frac{\kappa_{\mathrm{u}}^2 \cdot \kappa_{\mathrm{V}}^2}{\kappa_{\mathrm{H}}^2(\kappa_i)}}{\kappa_{\mathrm{H}}^2(\kappa_i)}$	$\frac{\kappa_{\rm u}^2\cdot(\kappa_{\rm u}\lambda_{\rm du})^2}{\kappa_{\rm H}^2(\kappa_i)}$
	VBF	$\kappa_{v}^{2} \cdot \kappa^{2}(\kappa_{v} \lambda_{dv}, \kappa_{v}, \kappa_{v} \lambda_{dv}, \kappa_{v})$	$\kappa_{v}^{2}\cdot\kappa_{v}^{2}$	$\kappa_{\rm v}^2 \cdot (\kappa_{\rm u} \lambda_{\rm du})^2$
	WH	$\frac{\kappa_{\chi}^{2}(\kappa_{z})}{\kappa_{z}^{2}(\kappa_{z})}$	$\pi \sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt$	$\frac{\kappa_{\rm v}^2(\kappa_{\rm s})}{\kappa_{\rm s}^2(\kappa_{\rm s})}$
	ZH	"H(")	^R H(^R i)	$\mathbf{x}_{\mathrm{H}}(\mathbf{x}_{i})$

	Probing quark and lepton fermion symmetry assuming no invisible or undetectable widths						
	Free parameters: $\kappa_{\rm V}(=\kappa_{\rm Z}=\kappa_{\rm W}), \lambda_{\rm lq}(=\kappa_{\rm l}/\kappa_{\rm q}), \kappa_{\rm q}(=\kappa_{\rm t}=\kappa_{\rm b}).$						
CNAC /		$\mathrm{H}\to\gamma\gamma$	$\mathrm{H} \rightarrow \mathrm{ZZ}^{(*)}$	${ m H} ightarrow { m WW}^{(*)}$	$H \rightarrow b\overline{b}$	${\rm H} \rightarrow \tau^- \tau^+$	
	ggH t $\bar{t}H$	$\frac{\kappa_{\rm q}^2 \kappa_{\gamma}^2(\kappa_{\rm q},\kappa_{\rm q},\kappa_{\rm q}\lambda_{\rm lq},\kappa_{\rm V})}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_{\mathrm{q}}^2 \cdot \kappa_{\mathrm{V}}^2}{\kappa_{\mathrm{H}}^2(\kappa_i)}$		$rac{\kappa_{ extrm{q}}^2\cdot\kappa_{ extrm{q}}^2}{\kappa_{ extrm{H}}^2(\kappa_i)}$	$\frac{\kappa_{\rm q}^2 \cdot (\kappa_{\rm q} \lambda_{\rm lq})^2}{\kappa_{\rm H}^2 (\kappa_i)}$	
	VBF WH ZH	$\frac{\kappa_{\rm V}^2 \cdot \kappa_{\gamma}^2(\kappa_{\rm q},\kappa_{\rm q},\kappa_{\rm q}\lambda_{\rm lq},\kappa_{\rm V})}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_{\rm V}^2 \cdot \kappa_{\rm V}^2}{\kappa_{\rm H}^2(\kappa_i)}$		$\frac{\kappa_{\mathrm{V}}^2{\cdot}\kappa_{\mathrm{q}}^2}{\kappa_{\mathrm{H}}^2(\kappa_i)}$	$\frac{\kappa_{\rm V}^2 \cdot (\kappa_{\rm q} \lambda_{\rm lq})^2}{\kappa_{\rm H}^2(\kappa_i)}$	

Probing the fermion sector

[CMS-PAS-HIG-13-005]

55

Summary of scalar couplings tests

[ATLAS-CONF-2013-034] [CMS-PAS-HIG-13-005]

56

"C6" vs "resolved C6"

Generic coupling fit

- Assume custodial symmetry (K v = K w = K z).
- Loops treated
 effectively (κ_γ, κ_g).
- □ Option to allow BSM decays, forcing $K_V \le 1$.

Resolved coupling fit

- Keep W and Z separate.
- Loops assuming SM structure:
 - $\bullet \ \mathcal{K}_{g} (\mathcal{K}_{b}, \mathcal{K}_{t}).$
 - $\overset{\bullet}{} \mathcal{K}_{\gamma} (\mathcal{K}_{W}, \mathcal{K}_{b}, \mathcal{K}_{t}, \mathcal{K}_{t}).$
- Only SM-like decays.

CERN 58

 \sqrt{s} = 7 TeV, L \leq 5.1 fb⁻¹ \sqrt{s} = 8 TeV, L \leq 19.6 fb⁻¹

CMS Preliminary

● 68% CL ● 95% CL

KW

Resolving SM contributions

[CMS-PAS-HIG-13-005]

59

[http://cern.ch/go/W96V]

Shifts to tree-level couplings due to mixing with heavier Higgs

$$c_{V} = \sin(\beta - \alpha) \qquad c_{t} = \frac{\cos \alpha}{\sin \beta} \qquad c_{b} = -\frac{\sin \alpha}{\cos \beta} \qquad \begin{pmatrix} h^{0} \\ H^{0} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \operatorname{Re} H^{0}_{u} \\ \operatorname{Re} H^{0}_{d} \end{pmatrix}$$

$$\operatorname{tan} \beta = \frac{v_{u}}{v_{d}}$$

Only two regions in the (c_t, c_b) plane accessible in a generic Type-II 2HDM

Down-Suppressed region almost not accessible in the MSSM for $\tan \beta > 1$

see: Azatov, Chang, Craig, Galloway PRD 86 (2012) 075033

[http://cern.ch/go/W96V]

61

For the impatient ones here is a theorist's combination of ATLAS+CMS+Tevatron:

from: Azatov, Galloway Int. J. Mod. Phys. A28 (2013) 1330004

the current fit by CMS seems to favor the MSSM region, though errors are large

It would be nice to see the same plot by ATLAS and even nicer to see plot in the plane (κ_u, κ_d)

)

[http://cern.ch/go/W96V]

62

Implications on the masses of the heavier Higgses

In the decoupling limit: $\alpha \rightarrow$

$$k \to \beta - \pi/2$$

$$c_{V} = 1 - \Delta^{2} \frac{1}{\tan^{2}\beta} + O(\Delta^{3}) \qquad c_{t} = 1 - \Delta \frac{1}{\tan^{2}\beta} + O(\Delta^{2}) \qquad \Delta = O\left(\frac{m_{Z}^{2}}{m_{H}^{2}}\right)$$
starts at $O(m_{H}^{-4})$

$$c_{b} \text{ most sensitive probe of spectrum of Heavy Higgses} \qquad \frac{\delta c_{b}}{c_{b}} > 0.1 \qquad \longrightarrow \qquad m_{H} > 300 - 400 \text{ GeV}$$

Notice:

masses of Heavy Higgses are not linked to naturalness of m_h anyway

Lighter masses (up to $m_H \sim 200 \text{ GeV}$) however simple to obtain in explicit models (ex: NMSSM) with mild tuning of Δ

see for example: Barbieri et al. arXiv:1304.3670

[http://cern.ch/go/W96V]

Shifts to loop-induced couplings due to squarks

63

Composite (R.Contino)

[http://cern.ch/go/W96V]

Leading effects in tree-level couplings and Zγ rate

$$c_V, c_u, c_d = 1 + O\left(\frac{v^2}{f^2}\right)$$
 $\qquad \frac{\Gamma(h \to Z\gamma)}{\Gamma_{SM}} = 1 + O\left(\frac{v^2}{f^2}\right)$ $\qquad f = \text{Higgs decay constant}$
 $m_{ ext{new}} = g_*f \lesssim 4\pi f$

Red points at $(v/f)^2 = 0.2, \ 0.5, \ 0.8$

a.david@cern.ch LHC Physics 2013

64

The case for the SMH (R.Contino)

[http://cern.ch/go/W96V]

- If one assumes that
- 1. The new boson is part of an $SU(2)_L$ doublet
- 2. There is a gap between the NP scale and $m_{\rm H}$

then it must follow:

- h has spin 0
- h is (mostly) CP=+ 🗸
- There exists a correlation among processes with 0,1,2 Higgs bosons
 - Ex: custodial symmetry

 $\frac{m_W}{m_Z \cos \theta_W} = 1 \quad \Longrightarrow \quad \lambda_{WZ} = \frac{c_W}{c_Z} = 1$

 There are no new light states to which the Higgs boson can decay

```
Ex: Invisible width=0
```


important to confirm the picture but their success comes less of a surprise given the fits on couplings

- 20 30 (L₀. / L₀.)
- Ex: there's no reason why a J^P=0⁻ boson should have SM coupling strength

$$D_{\mu}H|^2$$
 vs $rac{ ilde{c}_{WW}}{M^2}W_{\mu
u} ilde{W}^{\mu
u}H^{\dagger}H$

LHC discovery

Birth of a Higgs boson

Results from ATLAS and CMS now provide enough evidence to identify the new particle of 2012 as 'a Higgs boson'.

In the history of particle physics, July 2012 will feature prominently as the date when the ATLAS and CMS collaborations announced that they had discovered a new particle with a mass near 125 GeV in studies of proton-proton collisions at the LHC. The discovery followed just over a year of dedicated searches for the Higgs boson, the particle linked to the Brout-Englert-Higgs mechanism that endows elementary particles with mass. At this early stage, the phrase "Higgs-like boson" was the recognized shorthand for a boson whose properties were yet to be fully investigated (*CERN Courier* September 2012 p43 and p49). The outstanding performance of the LHC in the second half of 2012 delivered four times as much data at 8 TeV in the centre of mass as were used in the "discovery" analyses. Thus equipped, the experiments were able to present new results at the 2013 Rencontres de Moriond in March, giving the particle-physics community enough evidence to

March, giving the particle-physics community enough evidence to name this new boson "a Higgs boson".

results that further elucidate the nature of the particle discovered just eight months earlier. The collaborations find that the new particle is looking more and more like a Higgs boson. However, it remains an open question whether this is *the* Higgs boson of the Standard Model of particle physics, or one of several such bosons predicted in theories that go beyond the Standard Model. Finding the answer to this question will require more time and data.

This brief summary provides an update of the measurements

	Obser compa J ^P :	ved CL _s red with =0 ⁺	0 ⁻ (gg) pseudo- scalar	2 ⁺ _m (gg) minimal couplings	2 _m ⁺ (qq̄) minimal couplings	1 ⁻ (qq̄) exotic vector	1+ (qq̄) exotic pseudo-vector
	77(*)	ATLAS	2.2%	6.8%	16.8%	6.0%	0.2%
	22.7	CMS	0.16%	1.5%	<0.1%	<0.1%	<0.1%
	\ A/\A/ (*)	ATLAS	-	5.1%	1.1%	-	-
	~~~~	CMS	-	14%	-	-	-
	ŶΫ	ATLAS	-	0.7%	12.4%	-	-

Table 1. Summary of preliminary results of the hypothesis tests compared with the Standard Model hypothesis of no spin, positive parity ( $J^P = 0^+$ ). All alternatives are disfavoured using the CL_s ratio of probabilities that takes into account how the observation relates to both the Standard Model and the alternative hypotheses.





### Summary



□ Went from "a new particle" to "a Higgs Boson".
 □ m_x ~ 125.6 ±0.4 GeV.

#### Big picture unfailingly consistent with SMH:

- Per channel, per final state, and per production mode.
- No significant deviations of scalar couplings.
- Parity hypothesis tests disfavor 0⁻.
- Other  $J^{P}$  hypothesis tests disfavor  $J \neq 0$ .

#### Working hard to leave no stone unturned.

- Look for the Higgs parallel session on Wednesday.
- Theoretical progress still needed (ggH).
- Many channels in the works: ttH,  $\mu \mu$ , invisible.

### For when a LHC combination?



### The beautiful boring 2013 Universe

#### [arXiv:1303.5062]

□ Up above: "Simple sixparameter ∧ CDM".



Looking forward to LHC combination and surprises at higher energy: PeV neutrinos, LHC 13 TeV, ...

a.david@cern.ch LHC Physics 2013

Down below: (Not-as-simple)

~20-parameter Standard Model





### "...and references therein."

- - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ HiggsPublicResults
- - https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsHIG
- Tevatron
  - http://tevnphwg.fnal.gov/
  - CDF
    - http://www-cdf.fnal.gov/physics/new/hdg/Results.html
  - D0
    - http://www-d0.fnal.gov/d0 publications/ d0 pubs list bytopic.html#higgs




## Looking well ahead

[http://cern.ch/go/P8Tn] [http://cern.ch/go/I7RZ]

73

#### □ 300/fb at 14 TeV:

- Vast improvement over present datasets.
- Room for theory improvements.
- □ For (HL-LHC) 3 ab⁻¹:
  - self-coupling seems
    feasible with
    λ_{HH} ~ 3σ /expt.







75





### Probing possible 2HDM

[CMS-PAS-HIG-13-005]

77





# CMS: 2⁺_m combination





#### A tribute to those doing SM calculations







SSPL/GETTY IMAGES

Simulation of a Higgs-Boson decaying into four muons, CERN, 1990.

83

Take a moment to thank this little particle for all the work it does, because without it, you'd be just inchoate energy without so much as a bit of mass. What's more, the same would be true for the entire universe. It was in the 1960s that Scottish physicist Peter Higgs first posited the existence of a particle that causes energy to make the jump to matter. But it was not until last summer that a team of researchers at Europe's Large Hadron Collider - Rolf Heuer, Joseph Incandela and Fabiola Gianotti - at last sealed the deal and in so doing finally fully confirmed Einstein's general theory of relativity. The Higgs - as particles do - immediately decayed to more-fundamental particles, but the scientists would surely be happy to collect any honors or awards in its stead.

Photos: Step inside the Large Hadron Collider.

Most Emailed

2008: Barack Obama

2009: Ben Bernanke

Most Read

- 1 Who Should Be TIME's Person of the Year 2012?
- 2 LIFE Behind the Picture: The Photo That Changed the Face of AIDS
- 3 Nativity-Scene Battles: Score One for the Atheists
- 4 The \$7 Cup of Starbucks: A Logical Extension of the Coffee Chain's Long-Term Strategy